LUMEL
 EVERYTHING COUNTS

POWER NETWORK ANALYZER ND45

Table of contents

1. General Specification 6
1.1. Features of the Device 6
1.1.1. Operational safety 10
1.1.1.1 Warning and Information Signs 10
1.1.1.2 Operating Safety 11
1.1.1.3 Remarks Concerning the Analyzer Installation 11
1.1.1.4 Precautions in the ESD Protection Range 12
1.2.1. Connection diagrams 12
1.2.1.1. Measurement signals 14
1.2.1.2. Communication interfaces 18
1.2.1.3. Card - 8 relay outputs 18
1.2.1.4. Card -6 binary inputs, 4 relay outputs 19
1.2.1.5. Card - 6 binary inputs, 3 analog outputs 20
1.2.1.6. Card - 4 binary inputs, 6 analog outputs 21
1.2.2. Installation 22
2. Operation of the device 23
2.1. Main Screen 25
2.1.1. Navigation 27
2.1.2. Functionality 29
2.2. Control Panel 30
2.2.1. Navigation 31
2.2.2. Functionality 32
2.3. Screens and views of data presentation 34
2.3.1. Signs and colors of measurement parameters 35
2.3.2. Navigation 35
2.3.3. Functionality 37
2.3.3.1. Large digital view 38
2.3.3.2. Analog indicators 39
2.3.3.3. Trends 40
2.3.3.4. Harmonics and interharmonics 41
2.3.3.5. Energy 43
2.3.3.6. Vector diagrams 44
2.3.3.7. Waveform 45
2.3.3.8. Temperature / resistance 46
2.3.3.9. Binary inputs 47
2.3.3.10. Logs 48
2.4. Software update 49
3. Web server management 50
3.1. Navigation 51
3.2. Functionality 53
3.2.1 Login / Logout 53
3.2.2 Reboot device 54
3.2.3 Configuration of the User measurement data sets 54
3.2.4 Preview of measurement data 55
3.2.5 Selection of defined sets 55
3.2.6 Selection of User sets 56
3.2.7 Change of measurement data refresh time 57
3.2.8 Disabling the measurement data refresh 57
3.2.9 Preview of alarms 57
3.2.10 Confirmation of alarms 58
3.2.11 Preview of files 58
3.2.12 File list refresh 59
3.2.13 Opening and closing directories 59
3.2.14 Downloading files. 60
3.2.15 Deleting files 60
3.2.16 Setting configuration from a file 60
3.2.17 Displaying the file contents 61
3.2.18 Downloading the current configuration. 61
3.2.19 Sending a file 62
3.2.20 Preview of archive files 63
3.2.21 Preview of system information 64
4. FTP server management 65
4.1. Navigation 65
5. Configuration of the device parameters 66
5.1. Configuration management 66
5.2. Configuration of general settings 69
5.2.1. Basic parameters 69
5.2.2. LCD settings 70
5.3. Configuration of measurement input. 72
5.3.1. General settings 72
5.3.2. Voltage transformer ratio 73
5.3.3. Current transformer ratio 74
5.3.4. Current direction 75
5.3.5. Temperature and resistance. 76
5.3.7. External counters 77
5.4. Configuration of alarms 78
5.4.1. General settings 79
5.4.2. Control 81
5.4.3. E-mail 82
5.5. Configuration of visualization screens 83
5.5.1. Screens 83
5.5.2. Trends 84
5.6. Configuration of Ethernet 85
5.6.1. General settings 85
5.6.2. FTP and WWW Servers Settings 86
5.6.3. Mail client settings 87
5.6.3.1 SMTP configuration. 87
5.6.4. E-mail 87
5.7. Configuration of Modbus 88
5.7.1 Configuration of Modbus RTU 88
5.7.2 Configuration of Modbus TCP 89
5.8. Configuration of archiving 90
5.8.1. General settings 90
5.8.2. Parameters 91
5.9. Configuration of safety rules 93
5.10. Configuration of power quality 94
5.11. Resetting the counters 97
5.12. Tariff configuration 98
5.13. Configuration of outputs 100
5.13.1. Analog outputs. 101
5.11.2. Relays 102
6. File manager 103
7. Configuration of WWW 104
8. Configuration of FTP 104
9. Data archiving 105
10. Alarms 106
11. Construction 111
11.1. Screen 112
11.2. RS485 Interface 112
11.3. Ethernet Interface 114
11.4. USB Interface 115
11.5. SD memory card 115
12. Technical data 116
12.1. Measurements 116
12.2. Extension cards 122
12.2.1 Analog outputs 122
12.2.2 6 galvanically isolated binary inputs 122
12.2.3 Binary inputs 122
12.2.4. Alarm outputs 123
12.3. Reference conditions and rated operating conditions 123
12.4. Operating safety according to EN 61010-1, basic insulation 123
12.5. Electromagnetic compatibility 124
12.6. Assembly 124
12.7. Conformity with standards 124
12.8. Tables of registers 124
12.8.1. Information and status registers 125
12.8.2. CMD commands 126
12.8.3. Status registers 127
12.8.4. Parameters measured with aggregation of 200 ms 128
12.8.5. Parameters measured with aggregation of 1 s 131
12.8.6. Parameters measured with aggregation of 3 s 134
12.8.6. Parameters measured with aggregation of 10 min 135
12.8.8. Parameters measured with aggregation of 2 hours 139
12.8.9. Parameters averaged in time (Demand) 142
12.8.10. Frequency, temperature/resistance 142
12.8.11. Flicker 143
12.8.12. Statuses of binary inputs 143
12.8.13. Energy meters 143
12.8.14. THD, THDS, THDG and PWHD registers 146
12.8.15. Harmonics registers 147
12.8.16. Interharmonics registers 148
12.8.17. Voltage half-waves registers 149
12.8.18. Dips/swells/increases registers 150
12.8.19. Pulse and energy counters from the external card 157
12.8.20. Tariffs 157
13. Ordering codes 166

Table of class A parameters

Measured value	Aggregation	Measurement range	Basic error	Remarks
Voltage RMS				
Urms L1	3 s	$\mathrm{Un}=\mathrm{Udin}=230 \mathrm{~V}$.	$\pm 0.1 \%$ Udin	Class A
Urms L2		$23,0 \ldots 345,0 \mathrm{~V}(\mathrm{Ku}=1)$		
Urms L3		$\ldots 1,38 \mathrm{MV}(\mathrm{Ku} \neq 1)^{2}$		
Uavg L123		$\mathrm{Un}=\mathrm{Udin}=57,7 \mathrm{~V}$:		
		$\begin{aligned} & 5,7 \ldots 70 \mathrm{~V}(\mathrm{Ku}=1) \\ & \ldots 280 \mathrm{kV}(\mathrm{Ku} \neq 1)^{2} \end{aligned}$		
Half-wave voltage value				
Uhalf1 L1 ... Uhalf24 L1	200 ms	$\mathrm{Un}=\mathrm{Udin}=230 \mathrm{~V}$:	$\pm 0.2 \%$ Udin	Class A
Uhalf1 L2 ... Uhalf24 L2		$23,0 \ldots 345,0 \mathrm{~V}(\mathrm{Ku}=1)$		
Uhalf1 L3 ... Uhalf24 L3		$\ldots 1,38 \mathrm{MV}(\mathrm{Ku} \neq 1)^{2}$		
		$\mathrm{Un}=\mathrm{Udin}=57,7 \mathrm{~V}$:		
		$\begin{aligned} & 5,7 \ldots 70 \mathrm{~V}(\mathrm{Ku}=1) \\ & \ldots 280 \mathrm{kV}(\mathrm{Ku} \neq 1)^{2} \end{aligned}$		
Voltage harmonics				
Har1 UL1 ... Har51 UL1	1s	0.00...100.00\%	$\begin{gathered} \mathrm{U}_{\mathrm{m}} \geq 1 \% \mathrm{U}_{\mathrm{nom}} \pm 5 \% \mathrm{U}_{\mathrm{m}} \\ \mathrm{U}_{\mathrm{m}}<1 \% \mathrm{U}_{\mathrm{nom}} \pm 0.05 \% \mathrm{U}_{\mathrm{nom}} \end{gathered}$	Class I
Har1 UL2 ... Har51 UL2				
Har1 UL2 ... Har51 UL2				
Har1 UL3 ... Har51 UL3				
Current RMS				
Irms L1				
Irms L2	3 s	$\ldots 150.0 \mathrm{kA}(\mathrm{Ki} \neq 1)$	$\pm 0.1 \%$ In	
Irms L3	3	$\begin{array}{r} \text { In }=1 \mathrm{~A}: 0.010 \ldots 1.5 \mathrm{~A}(\mathrm{Ki}=1) \\ \ldots 30.0 \mathrm{kA}(\mathrm{Ki} \neq 1) \end{array}$		Class A
Iavg L123				
		Current harmonics		
Har1 IL1 ... Har51 IL1				
Har1 IL2 ... Har51 IL2	1 s	0.00...100.00\%	$\mathrm{I}_{\mathrm{m}} \geq 3 \% \mathrm{I}_{\mathrm{nom}} \pm 5 \% \mathrm{I}_{\mathrm{m}}$	Class I
Har1 IL3 ... Har51 IL3			$\mathrm{Im}_{\mathrm{m}}<3 \% \mathrm{I}_{\text {nom }} \pm 0,15 \% \mathrm{I}_{\mathrm{n}}$	

1. Basic error with respect to the Udin value acc.to EN-61000-4-30.
2. Range $\mathrm{Ku}=1 \ldots 4000.0$ and $\mathrm{Ki}=1 \ldots 20,000.0$.
3. Udin - value obtained from the declared supply voltage $U c=U n$ by the transformer ratio, according to EN-61000-4-30.
4. IIm, , Um - measured values of currents and voltages according to EN-61000-4-7.
5. IInom , Unom - nominal values of currents and voltages according to EN-61000-4-7.
6. In , Un - nominal values of currents and voltages according to EN-61000-4-30.

1. General Specification

ND45 Analyzer is designed for the measurement and analysis of three-phase, 3- or 4-wire power network parameters in balanced or unbalanced systems.

Complete set of the Analyzer includes:

- ND45 Meter 1 pc
- User's Manual - Quick Start 1 pc
- mounting brackets to fix the device in the panel 4 pcs
- key 1 pc
- ferrite filter STAR-TEC 742711321 pc
- SD card 1 pc

Caution! On the SD card is located ND45 Setup software and user manual.

1.1. Features of the Device

- measurement and recording of energy quality parameters according to EN 50160 standard.
- intuitive operation of the device using a touch screen and graphical user interface based on Linux.
- color touch screen LCD TFT 5,6", 640×480 pixels
- communication interfaces : Ethernet 10/100 Base-T, Modbus TCP/IP Slave, RS-485 Modbus Slave
- all phases are separated
- IP65 casing protection on the user's side
- selection of the time zone, automatic adjustment for Daylight Saving Time, synchronization with time server
- data archiving on an SD card
- WWW server, FTP server
- logs of interrupts, dips, swells, alarms and audits
- Firmware update option
- language choice Polish/English
- Dedicated visualization in the form of the following displays, among others: digital, analog, harmonics, vector diagrams, trends, waveform records
- sampling frequency of the measurement card: 20480 Hz

Measured parameters :

Voltage measurements	Parameters measured with aggregation of 200 ms	
	RMS:	Urms L1, Urms L2, Urms L3, Uavg L123.
	Basic RMS:	Ufund L1, Ufund L2, Ufund L3, Ufavg L123.
	Phase-to-phase:	Umf L1-2, Umf L2-3, Umf L3-1, Umf avg L123.
	Asymmetry:	Vunb.
	Half wave:	Uhalf1 L1 ... Uhalf24 L1,
		Uhalf1 L2 ... Uhalf24 L2,
		Uhalf1 L3 ... Uhalf24 L3.
	Parameters measured with aggregation of 1 s	
	RMS:	Urms L1, Urms L2, Urms L3, Uavg L123.
	Basic RMS:	Ufund L1, Ufund L2, Ufund L3, Ufavg L123.
	Phase-to-phase:	Umf L1-2, Umf L2-3, Umf L3-1, Umf avg L123.
	Asymmetry:	Vunb.
	Harmonics:	Har1 UL1 ... Har51 UL1,
		Har1 UL2 ... Har51 UL2,
		Har1 UL3 ... Har51 UL3.
	Interharmonics	IHar1 UL1 ... IHar51 UL1,
		IHar1 UL2 ... IHar51 UL2,
		IHar1 UL3 ... IHar51 UL3.
	Distortion factor:	THD U L1, THD U L2, THD U L3,
		THD Uavg L123.
	Distortion factor of Harmonic Groups:	THDS U L1, THDS U L2, THDS U L3, THDS Uavg L123.
	Distortion factor of	THDG U L1, THDG U L2, THDG U L3,
	Harmonic Sub-groups:	THDG Uavg L123.
	Partially weighted	PWHD U L1, PWHD U L2, PWHD U L3,
	distortion factor:	PWHD Uavg L123.
	Parameters measured with aggregation of 3 s	
	RMS:	Urms L1, Urms L2, Urms L3, Uavg L123.
	Basic RMS:	Ufund L1, Ufund L2, Ufund L3, Ufavg L123.
	Phase-to-phase:	Umf L1-2, Umf L2-3, Umf L3-1, Umf avg L123.
	Asymmetry:	Vunb.
	Parameters measured with aggregation of 10 min .	
	RMS:	Urms L1, Urms L2, Urms L3, Uavg L123.
	Basic RMS:	Ufund L1, Ufund L2, Ufund L3, Ufavg L123.
	Phase-to-phase:	Umf L1-2, Umf L2-3, Umf L3-1, Umf avg L123.
	Asymmetry:	Vunb.
	Parameters measured with aggregation of 2 hours	
	RMS:	Urms L1, Urms L2, Urms L3, Uavg L123.
	Basic RMS:	Ufund L1, Ufund L2, Ufund L3, Ufavg L123.
	Phase-to-phase:	Umf L1-2, Umf L2-3, Umf L3-1, Umf avg L123.
	Asymmetry:	Vunb.
	The values averaged for $15 \mathrm{~min}, 30 \mathrm{~min}$ or 1 hour.	

Other parameters	Parameters measured with aggregation of 1 s	
	Active power	P L1, P L2, P L3, Pavg L123, P L123.
	Reactive power	Q L1, Q L2, Q L3, Qavg L123, 5 Q L123.
	Apparent power	S L1, S L2, S L3, Savg L123, 5 S L123.
	Parameters measured with aggregation of 3 s	
	Active power	P L1, P L2, P L3, Pavg L123, \sum P L123.
	Reactive power	Q L1, Q L2, Q L3, Qavg L123, 5 Q L123.
	Apparent power	S L1, S L2, S L3, Savg L123, $\mathrm{S}^{\text {S L123. }}$
	Parameters measured with aggregation of 10 min .	
	Active power	P L1, P L2, P L3, Pavg L123, \sum P L123.
	Reactive power	Q L1, Q L2, Q L3, Qavg L123,
	Apparent power	S L1, S L2, S L3, Savg L123, $\mathrm{SS}^{\text {S L123. }}$
	Parameters measured with aggregation of 2 hours	
	Active power	P L1, P L2, P L3, Pavg L123, $\mathrm{\sum}$ P L123.
	Reactive power	Q L1, Q L2, Q L3, Qavg L123, 5 Q L123.
	Apparent power	S L1, S L2, S L3, Savg L123, S L123.
	Averaged values for $15 \mathrm{~min}, 30 \mathrm{~min}$ or1 hour	
	Demand	P Demand, Q Demand, S Demand.
	Parameters measured with aggregation of 200 ms	
	Power distortion factor:	dPF L1, dPF L2, dPF L3, dPFavg L123.
	Active power factor:	PF L1, PF L2, PF L3, PFavg L123.
	$\operatorname{tg} \varphi$ factor:	$\operatorname{tg} \varphi \mathrm{L} 1, \operatorname{tg} \varphi \mathrm{~L} 2, \operatorname{tg} \varphi \mathrm{~L} 3, \operatorname{tg} \mathrm{~g}^{2} \mathrm{vg} \mathrm{L} 123$.
	The angle between the voltage and current:	$\varphi \mathrm{L} 1, \varphi \mathrm{~L} 2, \varphi \mathrm{~L} 3$, ¢avg L123.
	Voltage phase-to-phase angle:	ষ U L1-2, ষ U L2-3, ষ U L3-1.
	Parameters measured with aggregation of 1 s	
	Power distortion factor:	dPF L1, dPF L2, dPF L3, dPFavg L123.
	Active power factor:	PF L1, PF L2, PF L3, PFavg L123.
	$\operatorname{tg} \varphi$ factor:	$\operatorname{tg} \varphi \mathrm{L} 1, \operatorname{tg} \varphi \mathrm{~L} 2, \operatorname{tg} \varphi \mathrm{~L} 3, \operatorname{tg} \varphi \operatorname{avg} \mathrm{~L} 123$.
	The angle between the voltage and current:	$\varphi \mathrm{L} 1, \varphi \mathrm{~L} 2, \varphi \mathrm{~L} 3$, φ avg L123.
	Voltage phase-to-phase angle:	¢ U L1-2, ষ U L2-3, ষ U L3-1.
	Frequency	f
	Parameters measured with aggregation of 3 s	
	Power distortion factor:	dPF L1, dPF L2, dPF L3, dPFavg L123.
	Active power factor:	PF L1, PF L2, PF L3, PFavg L123.
	$\operatorname{tg} \varphi$ factor:	$\operatorname{tg} \varphi \mathrm{L} 1, \operatorname{tg} \varphi \mathrm{~L} 2, \operatorname{tg} \varphi \mathrm{~L} 3, \operatorname{tg} \varphi \operatorname{avg} \mathrm{~L} 123$.
	The angle between the voltage and current:	$\varphi \mathrm{L} 1, \varphi \mathrm{~L} 2, \varphi \mathrm{~L} 3$, φ avg L123.
	Voltage phase-to-phase angle:	\Varangle U L1-2, \Varangle U L2-3, \Varangle U L3-1.
	Parameters measured with aggregation of 10 s	
	Frequency	f
	Parameters measured with aggregation of 10 s	
	Flicker	Pst L1 (1 min), Pst L2 (1 min), Pst L3 (1 min)

Parameters measured with aggregation of 10 min .	
Power distortion factor:	dPF L1, dPF L2, dPF L3, dPFavg L123.
Active power factor:	PF L1, PF L2, PF L3, PFavg L123.
$\operatorname{tg} \varphi$ factor:	$\operatorname{tg} \varphi \mathrm{L} 1, \operatorname{tg} \varphi \mathrm{~L} 2, \operatorname{tg} \varphi \mathrm{~L} 3, \operatorname{tg} \varphi \operatorname{avg} \mathrm{~L} 123$.
The angle between the voltage and current:	$\varphi \mathrm{L} 1, \varphi \mathrm{~L} 2, \varphi \mathrm{~L} 3$, ¢avg L123.
Voltage phase-to-phase angle:	\Varangle U L1-2, ষ U L2-3, ষ U L3-1.
Flicker	Pst L1, Pst L2, Pst L3
Parameters measured with aggregation of 2 hours	
Power distortion factor:	dPF L1, dPF L2, dPF L3, dPFavg L123.
Active power factor:	PF L1, PF L2, PF L3, PFavg L123.
$\operatorname{tg} \varphi$ factor:	$\operatorname{tg} \varphi \mathrm{L} 1, \operatorname{tg} \varphi \mathrm{~L} 2, \operatorname{tg} \varphi \mathrm{~L} 3, \operatorname{tg} \varphi \operatorname{avg} \mathrm{~L} 123$.
The angle between the voltage and current:	$\varphi \mathrm{L} 1, \varphi \mathrm{~L} 2, \varphi \mathrm{~L} 3$, ¢avg L123.
Voltage phase-to-phase angle:	ষ U L1-2, ষ U L2-3, ষ U L3-1.
Flicker	Plt L1, Plt L2, Plt L3
Parameters measured with aggregation of 1 s	
Temperature / Resistance	T1, T2.

1.1.1. Operational safety

Caution! Removal of the meter casing during the warranty period voids the warranty.

- The assembly and the installation of the electrical connections may be carried out only by a duly qualified electrician.
- Always check the connections before turning the meter on.
- Prior to removing the analyzer housing, always turn the supply off and disconnect the measurement circuits.
- The device is intended for installation and use in industrial electromagnetic environments.
- A switch or a circuit-breaker should be installed in the building or facility. It should be located near the device, easily accessible to the operator, and suitably marked.

1.1.1.1 Warning and Information Signs

One or more of presented symbols can be used in the device or user's manual:

| Caution: pay special attention to the description in the analyzer user's |
| :--- | :--- |
| manual. |

1.1.1.2 Operating Safety

In the safety operating scope, the ND45 Power Analyzer meets requirements related to safety of electrical measuring instruments for automation, acc. to EN 61010-1 standard and requirements concerning the immunity against noises occurring in industrial environments acc. to EN 61000-6-2 and EN 61000-6-4 standards.

The improper connection of the supply, communication interfaces and measuring signals, and the use of equipment inconsistent with the description included in the present user's manual and standards as above, can cause serious damage of the analyzer.
A switch or a circuit -breaker should be located near the device, easy accessible by the operator and suitable marked.

1.1.1.3 Remarks Concerning the Analyzer Installation

Various sources of noise occurring in practice interact with the ND45 Power Analyzer in a continuous or pulse way from the supply network side (as the result of the action of other devices) and also overlap on the measured signal or auxiliary circuits of the analyzer. In particular, strong pulse noises are dangerous for the device operation since they can cause sporadic erroneous measurement results or accidental operations of alarms. The level of these noises should be reduced to a value lower than the immunity threshold of the analyzer, first of all through a suitable installation of the analyzer in the object.

In this scope, it is recommended to observe following recommendations:

- Do not supply the analyzer from networks near devices generating high pulse noises in the supply network and do not use common grounding circuits with them.
- Signaling wires must be shielded.
- Lead connections of binary input circuits, individually in shields as above, by means of twisted wires.
- Connections of communication interface circuits, lead individually in shields as above and by means of twisted wires.
- All shields should be earthed unilaterally near the analyzer.
- A common earth conductor with other devices must be avoided.
- Apply the general principle that wires (group of wires) leading different signals should be led in the longest possible distance between them and crossings of such groups of wires should be made at a 90° angle.
- When connecting the supply, please remember that a switch or a circuit-breaker should be installed in the room. This switch should be located near the analyzer, easy accessible by the operator and suitably marked as an element switching the analyzeroff.
- It is not allowed to remove the analyzer casing.
- All operations concerning transport, installation, and commissioning as well as maintenance, must be carried out by qualified, skilled personnel, and national regulations for the prevention of accidents must be observed.
- Protections ensuring the device safety can be less effective in case of exploitation inconsistent with manufacturer's indications and principles of a good engineering practice.
- Set on the supply cable (near the recorder) a ferrite filter STAR-TEC 74271132 being in the recorder accessory set.

1.1.1.4 Precautions in the ESD Protection Range

Semiconductor elements or packages used in the analyzer design, can be damaged in result of electrostatic discharges (ESD). In order to prevent this, you must observe following recommendations during service works:

- Disassemble instruments only in the area protected against electrostatic discharges.
- Use conductive materials to dissipate electrostatic charges in the working area.
- Use only antielectrostatic packings to store electronic elements and packages.
- Do not touch elements and packages with hands.
- Do not keep materials susceptible to generate electrostatic charges in the working area.

1.2.1. Connection diagrams

Fig. 1. Terminal plate.

Component	Description
1	Measurement output of electrical parameters.
2	Additional inputs/outputs - optional equipment depending on ND45 execution code. There are relay outputs, binary inputs and analog outputs.
4	Measurement inputs of temperature and resistance.
4	Ethernet communication interface.
5	RS 485 Modbus Slave communication interface.
6	ND45 analyzer power supply.
7	Earth terminals for screens connection.

1.2.1.1. Measurement signals

3-wire network. Direct measurement.

Fig. 2. Diagram - 3-wire network.
3-Wire network. Semi-indirect measurement.

(8)
(8)

Fig. 3. Diagram - 3-wire network.

3-wire network. Indirect measurement using two current transformers and two or three voltage transformers.

Fig. 4. Diagram - 3-wire network.
4-wire network. Direct measurement.

Fig. 5. Diagram - 4-wire network.

4-wire network. Semi-indirect measurement.

Fig.6. Diagram - 4-wire network.
4-wire network. Semi-indirect measurement using four current transformers.

Fig. 7. Diagram - 4-wire network.

4-wire network. Indirect measurement using three current transformers and two or three voltage transformers.

Fig. 8. Diagram - 4-wire network.
4-wire network. Indirect measurement using four current transformers and two or three voltage transformers.

Fig. 9. Diagram - 4-wire network.

1.2.1.2. Communication interfaces

Ethernet (RJ45) socket.
To connect the meter to the hub (concentrator) or the switch, it is necessary to use a cable with 1:1 leads.

Fig. 10. Ethernet.

Fig. 11. Com. Interfaces

1.2.1.3. Card - 8 relay outputs

Relay outputs connection
Relay outputs configured as normally open (NO).
Where :
terminals 13-14: output 1 , terminals 21-22: output 5 , terminals 15-16: output 2 , terminals 23-24: output 6 , terminals 17-18: output 3 , terminals 25-26: output 7 , terminals 19-20: output 4 , terminals 27-28: output 8 .

Version with 8 relays uses the upper and lower part of the expansion card terminal, terminals from 13 to 28.

1.2.1.4. Card - 6 binary inputs, 4 relay outputs

Relay outputs connection

Relay outputs configured as normally open (NO).
Where :
terminals 13-14: output 1, terminals 15-16: output 2, terminals 17-18: output 3 , terminals 19-20: output 4,

Version with 4 relays uses the upper part of the expansion card terminal, terminals from 13 to 20.

Fig. 13: Relay outputs.

Binary outputs connection

Fig. 14: Binary inputs.
Binary inputs BI 1...BI 6 are controlled by signals:
0 V dc - inactive binary input
+5 ... 24 V dc - input as active binary input
$+8 \ldots 24 \mathrm{~V} \mathrm{dc}-$ input as counting input (high level)
Where:
terminal 21 : binary input BI 1 , terminal 25 : binary input BI 4, terminal 22 : binary input BI 2 , terminal 26 : binary input BI 5 , terminal 23 : binary input BI 3 , terminal 27 : binary input BI 6 .
terminal 24: common terminal for inputs BI 1-3 terminal 28: common terminal for inputs BI 4-6

1.2.1.5. Card - 6 binary inputs, 3 analog outputs

Analog outputs connection

Version with analog inputs uses the upper part of the extension card terminal and includes 3 pairs of terminals :

13-14 : analog output 1 (AO1)
16-17 : analog output 2 (AO2)
19-20 : analog output 3 (AO3)

Fig.15. Analog outputs.

Binary inputs connections

Fig. 16. Binary inputs.
Binary inputs BI 1...BI 6 are controlled by signals :

$$
\begin{aligned}
& 0 \mathrm{~V} \mathrm{dc} \quad-\text { inactive binary input } \\
& +5 \ldots 24 \mathrm{~V} \mathrm{dc}-\text { active binary input } \\
& +8 \ldots 24 \mathrm{~V} \mathrm{dc}-\text { input as counting input (high level) }
\end{aligned}
$$

Where:
terminal 21 : binary input BI 1 , terminal 25 : binary input BI 4,
terminal 22 : binary input BI 2 , terminal 26 : binary input BI 5 , terminal 23 : binary input BI 3, terminal 27 : binary input BI 6 .
terminal 24: common terminal for inputs BI 1-3
terminal 28: common terminal for inputs BI 4-6

1.2.1.6. Card - 4 binary inputs, 6 analog outputs

Analog outputs connection

Version with analog inputs uses both terminals of the extension card and includes 6 pairs of terminals :

13-14 : analog output 1 (AO1)
16-17 : analog output 2 (AO2)
19-20 : analog output 3 (AO3)
21-22 : analog output 4 (AO4)
$24-25$: analog output 5 (AO5)
27-28 : analog output 6 (AO6)

Fig. 17. Analog outputs.

Binary outputs connection

Fig. 18: Binary inputs.
Binary inputs BI 1...BI 4 are controlled by signals :
$0 \mathrm{~V} \mathrm{dc} \quad$ - inactive binary input
+5 ... 24 V dc - active binary input
$+8 . . .24 \mathrm{~V}$ dc - input as counting input (high level)
Where:
terminal 41 : binary input BI 1 ,
terminal 42 : binary input BI 2 ,
terminal 43 : binary input BI 3 ,
terminal 44 : binary input BI 4,
terminal 45: common terminal for inputs BI 1-4

1.2.2. Installation

ND45 analyzer can be fixed to a panel using mounting brackets. Casing dimensions $144 \times 144 \mathrm{x}$ 104 mm , mounting hole dimensions $138 \times 138 \mathrm{~mm}$.

Fig. 20. Dimensions - front.

Fig. 21. Dimensions - side.

2. Operation of the device

View of the main editing dialog box allowing for modification of digits, characters or special characters. The example here allows entering characters (lowercase).

Fig. 23. Dialog box - editing, lowercase.

Item	Description
$\mathbf{1}$	Display of the edited item.
$\mathbf{2}$	Confirmation of the entered value and closing the dialog box.
$\mathbf{3}$	Switching the keyboard between lowercase and uppercase.
$\mathbf{4}$	Changing tabs between the lowercase keyboard and the keyboard with digits and special characters.
$\mathbf{5}$	Buttons for moving the cursor to the left or right on the screen displaying the edited item (1).
$\mathbf{6}$	Deleting a single item of the screen (1) located directly behind the cursor.
$\mathbf{7}$	Closing the dialog box without saving the entered value.

View of the dialog box for entering characters (uppercase).

Fig.24. Dialogue - editing, uppercase.
View of the dialog box for entering numerical values and available special characters.

Fig. 25. Dialog box - editing, special characters.
Editor of numerical values Fig.26. The upper part contains a range of values which can be saved. This functionality allows users to enter the fixed-point values (example on the left) or floating point
values (example on the right), deleting the entire screen displaying the edited value or a single digit.

Fig. 26. Dialog box - editing, numerical values.
Multiple selection list Fig. 27 (example on the right), more than one option can be selected. To select an unselected item on the screen touch it. To cancel the selection touch the previously selected item again. Additional buttons provide the functionalities of auto-select or deselect of all the options of the list. The selection list (example on the left) allows for selection of only one of the available options.

Fig. 27. Dialog box - selection, lists.

2.1. Main Screen

After starting the device the User will be redirected to the main screen Fig.28. At the start-up (for standard configuration) it will be the first screen view of digital displays showing the values aggregated with 1 s . of the individual U RMS phases and the average value.

The main screen contains elements belonging to the three groups. Access to all the elements assigned to the individual groups is possible by touching any point on the screen of the meter.
The first group consists of navigational elements which allow the User to change the way the
measured values are presented, depending on the current configuration settings.

Fig. 28. Navigational elements.
Another group consists of functional elements which let the User change current settings of the meter and provide access to advanced configuration settings.

Fig. 29. Functional elements.

The last group consists of information elements which present the data available to the User.

Fig. 30. Information elements.

2.1.1. Navigation

Pressing a finger to the screen area used for presenting the analyzer data displays a window for, among others, editing navigation.

Fig. 31. Navigation - main screen.

Selected navigational elements are presented below.

Symbol	Description
Fig. 32. Navigation - screens.	Navigation for the currently set screen mode. The screen together with views can be individually defined for each configuration. After the right arrow is selected, the device presents other views of the screen. When the last element is reached, the selection of the option to move to the right will result in return to the first element. The option to move to the left is executed in the same way.
	The option to move to the next screen is assigned to the button. When this option is selected, the device displays the next available screen for this configuration and the first defined view.
Fig. 33. Navigation	
- views	

Fig. 34. Navigation - switching views and screen.
Dialog box Fig. 30 (on the left) allows for selecting one of the available screens. By using this dialog box the User can switch directly to the selected mode. The example shows the configuration settings which contain all possible screen views that can be set.

Dialog box Fig. 30 (on the right) shows an example of the selection of the view which is available for the currently selected screen mode. The example shows standard views for the selected screen (Large digital view).

2.1.2. Functionality

The table shows the individual elements of the main screen with the description of their functionality.

Symbol	Description
	Access to the control panel, which manages the configurations, is protected from unauthorized access by the login window.
Fig. 35. Function - control panel.	
0	Switching to the tab with system information.
Fig. 36. Function - system information.	
	Switching to the context menu that allows management of the selected parameters of the device. Example of a dialog box is shown below.
Fig. 37. Function - context menu.	

Options available in the context menu depend on the selected screen on which the menu was opened. The table below shows all possible options.

Fig. 38. Navigation - context menu.

Function	Description
Reset all statistics	Deletes minimum and maximum values.
Confirm alarms	Opens the window where alarms can be confirmed.
Clear this log	Deletes selected log.
Clear all logs	
Open file manager	Deletes all entries in all logs.
	Opens the window of file manager.

Authorization is required to perform the described functions. After selection it is necessary to confirm authorization by entering password in the following dialog box.

Fig. 39. Navigation-login screen.

2.2. Control Panel

Operation of the control panel involves selecting one of the available parameter groups. The individual group allows for full configuration of the device, depending on user requirements.

Fig. 40. Control Panel - main screen

2.2.1. Navigation

Control Panel is opened with the button located on the main screen
Configurations are edited by selecting the appropriate option on the main screen of the Control Panel. After pressing the selected icon a dialog box with a set of configuration parameters appears.
The first tab in the individual dialog boxes is opened by default, the other tabs are opened according to the rule set forth below.

Fig. 41. Navigation - opening tabs
Parameter groups such as Alarms or Security have an additional check box to select the parameter to be configured. Navigation between them is done as shown in Fig. 38.below. By touching the desired field the selection list of available components is generated.

There are also navigation buttons in the main window with

which it is possible to change the options without opening an additional dialog box.

Fig. 42. Navigation - switching configured parameters.

2.2.2. Functionality

Access to the Control Panel is secured with the login window protecting from unauthorized access to the device settings. Users are identified by user name and password assigned to the name.
After login the User can choose one of the three options of configuration changes. Selecting the first option Fig. 43 redirects to the main window of the Control Panel. Selecting the Close button redirects to the main screen of the device.

Fig. 43. Navigation - Control Panel.
The individual options of the Control Panel are described in the following list.

Option	Description		
Fig. 44. Option 1.			
General			
setings		\quad	Selection of the name and ID of the device. Changing the language, setting date
:---			
and time. Editing parameters of the LCD, such as screen saving, backlight and			
screen calibration.			

Fig. 47. Option 4.

Fig. 48. Option 5.

Fig. 49. Option 6.

Archive
Fig. 50. Option 7.

Fig. 51. Option 8.

Fig. 52. Option 9.
 Outputs

Fig. 53. Option 10.

System information

Settings for screens and trends. The User can turn on or turn off individual screens, select parameters presets or define their own ones that will be displayed on the device. Settings for trends include the selection of parameters sets and the definition of the data presentation field for each set.

Settings of DHCP, IP address, subnet mask, default gateway and FTP server.

Settings of Modbus slave protocol allowing the mode and transmission speed setting. Settings of the device ID and parameters related to TCP Module, switching on/off and port number.

Settings of archiving parameters. General archiving parameters: the number of records in the file, the time range of archiving, conditional archiving. Management of the individual parameters of archiving: parameter selection, specifying the time interval and the condition of archiving.

Settings of users rights. Assigning name, password and access rights.

Settings of parameters related to recording dips, swells and voltage interrupts.

Configuration of analog outputs and relays operation. Settings of access depending on the version of the analyzer. the service tab.

Fig. 54. Option 11.

2.3. Screens and views of data presentation

Visualization of measurement parameters has been divided into screens and groups of views assigned to them. Depending on the configuration settings, the User can choose selected screens for presentation, along with the group of views assigned to them. For example, large digital view is the first element which belongs to the group of screens. The User can assign the selected measured
values that will be available in the subsequent views.

2.3.1. Signs and colors of measurement parameters

The example below Fig. 55 shows an example screen (large digital view) with a view containing U RMS values of the individual phases and their average value.

Fig. 55. Presentation of measurement data.

The table below summarizes the various options of the screen from Fig. 51 with a description of the basic elements.

Option	Description
$\mathbf{1}$	Example of the correct measured value, which contains all the component measurements necessary for the aggregation of values.
$\mathbf{2}$	Alarm relating to the displayed value.
$\mathbf{3}$	The value was not correctly calculated. The measurement is incomplete for the aggregation.
$\mathbf{4}$	Wrong value or no value.

2.3.2. Navigation

The table below shows the set of navigational elements that allow the User to interact with the individual views or screens.

Fig. 56. Navigation 1.

Fig. 57. Navigation 2.

Fig. 58. Navigation 3.

Rys.59. Navigation 4.

Description

Applies to all screens :

Navigation with left / right arrows. It allows the User to switch between the views of individual screens. Navigation arrows are generated by touching the screen of the device.

Trends :

Harmonics

Touching the selected element on the screen, the User can change the harmonic elements displayed on the main screen. The device allows the User to generate harmonics for individual phases or a summary of all three phases.

The presented elements allow the User to increase or decrease the scale of harmonics. The maximum value displayed on the main screen is limited to 100% and the minimum to 2%.

Vector diagram :

II U1

Fig. 60. Navigation 5.

Fig. 61. Navigation 6.
Waveform :

Touching selected elements of the presented waveform view, the User can add or remove the selected parameter from the screen.

Fig. 62. Navigation 7.

2.3.3. Functionality

Each screen has individual features for data presentation. The following sections describe the different types, with a description of the elements available to the User.

2.3.3.1. Large digital view

Fig. 63. Large digital view.

Option	Description
$\mathbf{1}$	Aggregation time of the presented value.
$\mathbf{2}$	Additional information describing the phase associated with the presented value.
	Description of the presented parameter.
$\mathbf{4}$	The minimum and maximum values of the presented value.
$\mathbf{5}$	Main field with the measured value.
$\mathbf{6}$	Unit describing the measured value.

2.3.3.2. Analog indicators

Fig. 64. Analog indicators.

Option	Description
$\mathbf{1}$	Aggregation time of the presented value.
$\mathbf{2}$	Additional information describing the phase associated with the presented value.
$\mathbf{3}$	Description of the presented parameter.
	Measured value in digital form.
$\mathbf{5}$	Analog indicator presenting the value of the measured parameter.
$\mathbf{6}$	Unit describing the measured value.
$\mathbf{7}$	The scale of the analogue display for the presented measured value.
$\mathbf{8}$	The minimum and maximum values of the presented value.

2.3.3.3. Trends

Fig. 65. Trends.

Option	Description
$\mathbf{1}$	The scale describing the range of values in the presented time. The range is scaled automatically together with the changes of the measured values.
$\mathbf{2}$	Main window of trends presentation.
$\mathbf{3}$	The range of time of the values presentation on the trends with the information about the parameters update frequency. For parameters aggregated every 1 second the presented value is the average value of two measurements.
$\mathbf{4}$	Time axis is updated automatically together with the successive measured values presented on the main screen.
$\mathbf{5}$	Description of the measured parameter. The description includes, among others, the parameter name, the information about the phase and the aggregation time.
$\mathbf{6}$	Unit of the selected measured parameter.
$\mathbf{7}$	Value of the measured parameter in digital form.

2.3.3.4. Harmonics and interharmonics

Fig. 66, Harmonics.

Option	Description
$\mathbf{1}$	The scale determining the value of each harmonic, expressed as a percentage.
$\mathbf{2}$	Additional field with information regarding the THD of the selected phases.
	Main window of harmonics presentation.
$\mathbf{4}$	Values describing the consecutive numbers of the presented harmonics.
	Colors assigned to the individual phases in accordance with the harmonics presented in the main window.

Fig. 67. Harmonics - the table.

Option	Description
$\mathbf{1}$	Fields describing the values presented on the main screen.
	Description of the subsequent harmonics displayed on the main screen.
$\mathbf{3}$	Division into phases for values presented on the main screen.
$\mathbf{4}$	Main screen containing the values for the individual parameters.

Reading of interharmonic values is possible through modbus registers according to point 12.8.16 and WWW page.

2.3.3.5. Energy

Fig. 68. Energy.

Option	Description
$\mathbf{1}$	The sum of active energy exported to the three phases. The field also describes the assignment of the subsequent three parameters for a given energy.
$\mathbf{2}$	Lists of energy values for individual phases.
$\mathbf{3}$	Displayed value of the measured energy.
$\mathbf{4}$	Window with the list of the sum of the measured imported active energy, along with the values of the individual phases.
$\mathbf{5}$	Unit assigned to the individual value of the measured energy.

2.3.3.6. Vector diagrams

Fig. 69. Vector diagrams.

Option	Description
$\mathbf{1}$	Summary table of values presented in the vector diagram.
$\mathbf{2}$	Main window containing the vector diagram.
$\mathbf{3}$	Measured parameter containing an indication of the angle value and a label with description.
$\mathbf{4}$	Description of the measured parameter with additional information regarding the phase.
$\mathbf{5}$	Value of the measured parameter in digital form.
$\mathbf{6}$	Unit describing the selected measured parameter.

2.3.3.7. Waveform

Fig. 70. Waveform.

Option	Description
1	Main window of the waveform screen containing the waveform or waveforms of the selected signals. Other additional information shown in the main window is described in the following paragraphs.
2	Field of presentation of the value of 200ms : Urms L1, Urms L2, Urms L3, Uavg, Irms L1, Irms L2, Irms L3, Iavg - depending on selected signals.
3	Field of presentation of the value of 200ms : U L1-2, U L3-1, U L2-3, $\varphi \mathrm{L} 1, \varphi \mathrm{~L} 2$, φ L3 - depending on selected signals.
4	Symbol of the presented parameter.
5	Value of the presented parameter.
6	Unit of the presented parameter.

2.3.3.8. Temperature / resistance

Fig. 71. Temperature / resistance.

Option	Description
$\mathbf{1}$	Description of unit assigned to a given field. Depending on the type of sensor (temperature or resistance)
$\mathbf{2}$	Indicator of the measured value.
$\mathbf{3}$	Measured value in digital form.
$\mathbf{4}$	Description of the channel.
$\mathbf{5}$	Measurement scale, adapted to the type of sensor.

2.3.3.9. Binary inputs

Fig. 72. Binary inputs.

Option	Description
$\mathbf{1}$	Visualization of the state of the binary input: bulb lit - binary input activated, bulb off - binary input deactivated.
$\mathbf{2}$	Status indicator of binary input: 1 - activated, 0 - deactivated.
$\mathbf{3}$	Description of binary output, e.g .: BI2 - binary input number 2.

2.3.3.10. Logs

Fig.73. Logs.

Option	Description
$\mathbf{1}$	The order of the message occurrence.
$\mathbf{2}$	The date of the message occurrence.
$\mathbf{3}$	The time of the message occurrence.
$\mathbf{4}$	The content of the message.
$\mathbf{5}$	An example of a log that contains information about configuration changes.

Audit logs are stored on the SD card. The file containing the current log is saved as audit.log.csv.
Preview a file stored on the SD card is shown below.

1	$2016-01-29$	$07: 35: 29$	Configuration changed (Admin)	
2	$2016-01-29$	$07: 36: 14$	Configuration changed (Admin)	
3				
4				

Fig. 74. Audit logs - save to file.
Each audit \log file can contain up to 100 records. When all records are full the next file audit.log.csv is created and the previously saved file is changed to audit.log.1.csv. When records in the next audit logs are full, subsequent ones are created : audit.log.2.csv, audit.log.3.csv itd.

Caution! Views of Logs screens relating to alarms are described in section 9. Alarms.

2.4. Software update

To update the software of the ND45 analyzer the update file should be downloaded from the manufacturer's website. The downloaded file must be copied to the SD card of the analyzer.

In the Control Panel, in System Information tab, select the Update group and then select the update file.

Fig. 75. Selection of update file.
The user confirms the selection from the list of detected files. Information about the update will be displayed in the next window. The process is confirmed by selecting Update.

Fig. 76. Update.

3. Web server management

Access to the Web server is obtained by entering the IP address assigned to the particular version of the analyzer in the browser.

Caution! The IP address of the device can be read by selecting Ethernet option on the Control Panel.

Fig. 77. Web server - general view

3.1. Navigation

Depending on the Ethernet configuration settings, two modes of access to the web server are available to the User. The first mode Users' Access is preceded by a login window.

Fig. 78. Web server - login.

According to the message in the login window it is recommended to go to the encrypted page. The login window for the encrypted version is shown below.

Fig. 79. Web server - encrypted login.

Anonymous access automatically redirects to the website with limited functionality.

The table lists the modules presented on the website.

Module	
Measurement data	Values 1s
Name	Value
Urms L1 1s	225．12V
Urms L2 1s	225.14 V
Urms L3 1s	225．08V

Fig．80．Web server－module 1.

Fig．81．Web server－module 2.

A Files：／ND45			
直 Γ 者血 \＄Q		近	
	Name	Modified	Size
－	2016－01－19 08＿16＿46．ND45A．rch	2016－01－19 08：17：26	10.0 kB
－	2016－01－19 08＿21＿26．ND45Ä．ch	2016－01－19 08：21：51	7.0 kB
－	Config＿20160112＿1727．ND45	2016－01－12 17：27：38	10.7 kB
b	Config＿20160113＿1101．ND45	2016－01－13 11：01：54	10.9 kB
－	alarm．log．csv	2016－01－19 08：54：18	1.3 kB
－	audit．log．csv	2016－01－19 08：45：22	596B

Fig．82．Web server－module 3.

© System information	ND45	Information module，contains basic information about the system．
Device name		
Device description	Power Analyzer	
Serial number	16010001	
System version	0.2 .01	
Fig．83．Web server－module 4．		

3.2. Functionality

No.	Option	User	cess	Anonymous access
General				
1	Login / Logout			\times
2	Reboot device			\times
3	Configuration of the User measurement data sets.			\times
Measurement data				
4	Preview of measurement data.			v
5	Selection of defined sets			v
6	Selection of User sets			\times
7	Change of measurement data refresh time			v
8	Disabling the measurement data refresh			v
Alarms				
9	Preview of alarms			v
10	Confirmation of alarms*	v	\times	\times
Files				
11	Preview of files*	V	\times	\times
12	File list refresh*	v	\times	\times
13	Opening and closing directories*	v	\times	\times
14	Downloading files*	v	\times	\times
15	Deleting files*	v	\times	\times
16	Setting configuration from a file*	v	\times	\times
17	Preview of archive file*	V	\times	\times
System information				
18	Preview of system information			v

* function availability depends on the user's authorization settings (5.9. Configuration of safety rules).

3.2.1 Login / Logout

Login window is shown in section 3.1. Navigation. Login and password are consistent with access rights defined in the device in the Security tab (section: 5.9 Configuration of safety rules).

The option to \log off from the server is located in the upper right corner of the browser. After the selection of the currently logged on user, select Logout from the drop-down list.

3.2.2 Reboot device

Remote reboot device via the website can be performed as shown below.

Fig. 84. Web server - reboot.
After the selection of the currently logged on user, select Reboot device from the drop-down list. ND45 reboot is confirmed in the next window.

3.2.3 Configuration of the User measurement data sets

Defining the sets of the measurement data may be performed as described below.

Fig. 85. Web server - User sets
After the selection of the currently logged on user, select User set config from the drop-down list.
In the next window, select the data to be presented in the measurement data window. The User selects a parameters group in which, after opening the drop-down list the parameters can be elected or deselected. After the setup is complete, select Save (to save the changes), or Cancel (closes the window without making any changes).

3.2.4 Preview of measurement data

View of a sample window with Measurement Data module is presented in section 3. Web server management, the module is described in section 3.1 Navigation.

3.2.5 Selection of defined sets

An example of changes in the measurement data selected from the default data sets is presented below. The User chooses the option that describes the currently presented data set and then selects one of the suggested sets from the list.

Measurement data		1s
Name	Values 1s Values 3s Values 10 min . Values 2 h Values other THD Harmonics U Harmonics I Energy meters Binary inputs	
Urms L1 1 s		
Urms L2 1s		
Urms L3 1s		
Uavg 1s		
Irms L1 1s		
Irms L2 1s		
Irms L3 1s		
Iavg 1 s		
IN 1 s		
P L1 1s		
P L2 1s	0.00 kW	
PL3 1s	0.00 kW	
Pavg 1s	0.00 kW	

Fig. 86. Web server - displaying the contents.

3.2.6 Selection of User sets

An example of changes in the measurement data selected from the individually defined data sets is presented below. The User chooses the option that describes the currently presented data set and then selects one of the suggested sets from the list.

Fig. 87. Web server - selection of User sets

3.2.7 Change of measurement data refresh time

Changing the refresh time allows the User to adjust the update frequency of the measurement data displayed on the page.

Measurement data		Values 1s -	1s
Name	Value	1s	
Urms L1 1 s	227.44V	5s	
Urms L2 1s	227.55 V		
Urms L3 1s	228.30 V		
Uavg 1 s	227.76 V	STOP	
Irms L1 1s	0.0000A		

Fig. 88. Web server - change of refresh interval.

3.2.8 Disabling the measurement data refresh

Disabling refresh stops downloading of measurement data from the device and keeps the values displayed at the time of refresh stop.

Measurement data		Values 1s v	1s
Name	Value	1s	
Urms L1 1s	227.44V	5s	
Urms L2 1s	227.55 V		
Urms L3 1s	228.30V		
Uavg 1 s	227.76 V	STOP	
Irms L1 1s	0.0000A		

Fig. 89. Web server - disabling refresh of the measured values.

3.2.9 Preview of alarms

View of a sample window with Alarms module is presented in section 3. Web server management, the module is described in section 3.1 Navigation.

3.2.10 Confirmation of alarms

\uparrow Alams		The window of alarms module with information about alarms occurrence.
Alarm 1 (Urms L1 200ms $=223.7 \mathrm{~V}$) (>200)	0948844	
Alarm 2 (Urms L2 200ms $=223.73 \mathrm{~V}$) (>210)	09:4845	
\checkmark Confim		
Fig. 90. Web server - alarm 1.		
\uparrow Alams		The User selects the alarm to be confirmed and confirms the selection pressing Confirm.
Alamm 1 (Ums L1 200ms $=223.7 \mathrm{~T}$) (3 200)	${ }^{094844}$	
Alarm 2 (Urms L2 200ms $=223.73 \mathrm{~V}$ ((>210)	${ }^{0948445}$	
\checkmark Contim		
Fig. 91. Web server - alarm 2.		
\uparrow Alams		View of alarms module after alarm confirmation : Alarm 1 (Urms L1 200ms = 223.7V) (>200) time 09:48:44
Alarm 1 (UTms L1 200ms $=223.7 V)(>200)$	09:48:44	
Alarm 2 (Urms L2 200ms $=223.73 \mathrm{~V}$ ($(\mathbf{2 1 0}$)	${ }^{09.4845}$	
\checkmark Confim		
Fig. 92. Web server - alarm 3.		

3.2.11 Preview of files

View of a sample window with Files module is presented in section 3. Web server management, the module is described in section 3.1 Navigation.

Sample files are stored on SD card.

Function	Sample file	Description
Archive	2016-01-19 08_16_46.ND45Arch	Archive file with the option of preview and export to csv. Format compatible with SQLite.
Configuration	Config_20160112_1727.ND45	The configuration file allows the User to set the configuration from the file on the device.
	alarm.log.csv	Information about alarms occurrence.
System logs Dips and swells	audit.log.csv	Information about system events.
	dipswell.log.csv	Information about the event occurrence.

Dips and swells measurements	dipswellsamples.log.csv	Information with additional measurements preceding and occurring immediately after the event.
Update	ND45_firmware_0.2.5.img	Update file

3.2.12 File list refresh

The element of the file management module with which the User can update the list of available files is selected below.

E Files: /ND45			
	Name	Modified	Size
\square	ND45_firmware_0.2.5.img	2016-01-27 12:28:08	376.0 kB
\square	alarm.log.csv	2016-01-28 12:43:11	2.5 kB
\square	audit.log.csv	2016-01-28 12:42:55	1.6 kB
\square	dipswell.log.csv	2016-01-27 09:21:48	179B
\square	dipswellsamples.log.csv	2016-01-27 09:21:48	6.3 kB

Fig. 93. Web server - files refresh

3.2.13 Opening and closing directories

The element of the file management module with which the User can open or close the available directories is selected below.

Fig. 94. Web server - opening and closing directories.

3.2.14 Downloading files

The element of the file management module with which the User can download the available files is selected below.

Fig. 95. Web server - downloading files.

3.2.15 Deleting files

The element of the file management module with which the User can delete the available files is selected below.

Fig. 96. Web server - deleting files.

3.2.16 Setting configuration from a file

The element of the file management module with which the User can set the ND45 configuration from a file is selected below.

Fig. 97. Web server - loading configuration from a file.

3.2.17 Displaying the file contents

The element of the file management module with which the User can preview the available files is selected below.

Fig. 98. Web server - preview of file contents.

3.2.18 Downloading the current configuration

The element of the file management module with which the User can download the current configuration of the analyzer is selected below.

Fig. 99. Web server - loading configuration from a file.

3.2.19 Sending a file

The element of the file management module with which the User can send files to the memory card is selected below.

EFiles / NDM5			
	Name	Modified	Size
5	2016-01-28 13_31_34.ND45Arch	2016-01-28 13:33:36	9.0 kB
-	2016-01-28 13_32_25.ND45Arch	2016-01-28 13:33:36	7.0 kB
d	Config_20160128_1329.ND45	2016-01-28 13:29:55	8.0 kB
4	alarm.log.csv	2016-01-28 13:33:28	137B
4	audit.log.csv	2016-01-28 13:33:26	2.0 kB
5	dipswell.log.csv	2016-01-27 09:21:48	179B

Fig. 100. Web server - sending a file.

3.2.20 Preview of archive files

Using the option described in section 3.2.17 (View file content) the User can preview the saved archive files.

Archive						

Fig. 101. Web server - preview of archive file.

A sample archive file with the description of tools for presenting and editing is shown below.

Fig. 102. Web server - properties of archive file.

Option	Description
$\mathbf{1}$	The name of the previewed archive file.
$\mathbf{2}$	The column with the consecutive numbering of the entries in the archive.
$\mathbf{3}$	The column with archiving date and time.
$\mathbf{4}$	The column with the description of the archived parameter.
$\mathbf{6}$	The column with the archived value.
$\mathbf{7}$	The column with the unit of the archived value.
$\mathbf{8}$	The button to exit the archive file preview.
$\mathbf{9}$	The option of grouping according to archiving time.
$\mathbf{1 0}$	The option of automatic adjustment of the columns width.
$\mathbf{1 1}$	The option to save the archive file in csv. format.
$\mathbf{1 2}$	The option to select the columns separator.

3.2.21 Preview of system information

View of a sample window with System Information module is presented in section 3. Web server management, the module is described in section 3.1 Navigation.

4. FTP server management

4.1. Navigation

Switching to the FTP server is possible, for example, by means of the browser window. By using the IP address assigned to the analyzer and entering the FTP access settings into Ethernet tab.

```
ftp://10.0.17.101/ND45/
```

Fig. 103. FTP server.
If the User uses the Users' access (recommended) he/she will be redirected to the login screen. After proper verification of the login and password, the User will be redirected to the stored files.

Indeks ftp://10.0.17.101/ND45/
Up to higher level directory

Name
2015-10-14 16_13_44.ND45Arch
Config_20151019_1222.ND45
Config_20151026_0923.ND45
alarm.log.csv
맥 audit.log.csv
-7ll dipswell.log.csv
dipswellsamples.log.1.csv
dipswellsamples.log.csv

Size	Last Modified	
10 KB	$2015-10-14$	$15: 14: 00$
11 KB	$2015-10-19$	$11: 22: 00$
11 KB	$2015-10-26$	$09: 23: 00$
14 KB	$2015-10-22$	$13: 22: 00$
7 KB	$2015-10-26$	$09: 24: 00$
3 KB	$2000-01-01$	$00: 00: 00$
35 KB	$2015-10-23$	$09: 19: 00$
5 KB	$2000-01-01$	$00: 00: 00$

Fig. 104. FTP server - files.

5. Configuration of the device parameters

5.1. Configuration management

After login the User can choose one of the three options of configuration changes :

Fig. 105. Configuration.

Option	Description
Edit current configuration	Switching to the Control Panel.
Default configuration	Restores the default configuration for the device.
Open configuration from file	Launches the file browser with a choice of available configuration files.

Fig. 106. Configuration - default configuration.

Default configuration settings are preceded by a dialog box requiring confirmation by the User.
File Browser shows the available configuration files possible to be opened and set in ND45. File Browser window contains:

Option	Description
File name	Individual name defined by the User when saving.
Date	Restores the default configuration for the device.
Size	The amount of memory used by the file.

Closing the Control Panel window is shown below. After one option is selected, a dialog box appears to confirm the completion of the configuration edition.

Fig. 107. Configuration - saving.

To save the configuration settings to a file, select the option as shown below. Selecting a field with the name of the file, the User can change the name of the file that normally contains the name describing the file to be saved and the date and time.

Export to file

Configuration file name:
Config_20150414_0946
Fig. 108. Configuration - saving to file.

5.2. Configuration of general settings

5.2.1. Basic parameters

Fig. 109. General settings - basic.

Parameter	Description
Device ID Device description	Assigned ID. The User can change the description.
	Editable description of the device.
Language	This option allows the User to select the language of the device operation.
Date	Date

and time	the date on the screen (year - month - day) which is to be modified be means of buttons	
	Time	Editing time is carried out as described for the date. In this case the User edits the selected elements of time (hour - minute - second).
	Time server	The selection list allows the User to select any time zone.
Automatic synchronization	Selection of time server providing the standard UTC time.	
Enabling automatic synchronization makes it impossible to manually set the date and time that will be retrieved from the selected time server for the selected time zone. Disabling synchronization allows the User to specify their own date and time settings.		
Synchronize	Forcing the synchronization of the system time in the application	

5.2.2. LCD settings

Fig. 110. General settings - LCD.

Parameter	Description
Screen saver	This option allows the User to enable or disable the screen saver. The User selects the time range from the list, after which the device's screen goes blank, or remains on.
LCD backlight	Adjusts the brightness of the device screen. Using the slider, the User changes the intensity of the backlight. The maximum value is set when the slider is moved to the right, moving to the left will reduce the brightness of the screen.
Calibrate touch	After selecting the calibration option the User will be redirected to the calibration window. In the next steps of the calibration the User must touch the points indicated on the screen. The screen is calibrated at five points, after calibration the device returns to the initial screen. Calibration of the screen cannot be stopped, when the screen is wrongly calibrated, the described process must be repeated.

5.3. Configuration of measurement input

5.3.1. General settings

Fig. 111. Measurement inputs - general settings.

Parameter	Description
Nominal I/U	Selection of the nominal current and voltage for the device.
Base frequency	Selection of nominal frequency. For 50 Hz (measurement values from 150 periods), for 60 Hz (measurement values from 180 periods).
Connection type Phase for synchronization Demand averaging time	Selecting the type of connection (3 or 4-wire).
	Parameter selection phase synchronization.Setting the time range (defined in minutes) for the averaged parameters (Demand).

5.3.2. Voltage transformer ratio

Fig. 112. Measurement input - voltage transformer ratio.

$\left.$| Parameter | Description |
| :--- | :--- |
| Auto ratio | Enabling or disabling changes the method of voltage transformer ratio
 calculation. |
| Primary | Primary voltage value. | | The value of the voltage transformer ratio is |
| :--- |
| calculated by dividing the primary value by |
| secondary value. | \right\rvert\, | Secondary | Secondary voltage value. | |
| :--- | :--- | :--- |
| Ratio | The value of voltage transformer ratio specified by the User. | |

5.3.3. Current transformer ratio

Fig. 113. Measurement input - current transformer ratio.

Parameter		Description	
Auto ratio		Enabling or disabling changes the method of current transformer ratio calculation.	
Phase current	Primary	Primary value of phase currents.	The value of the current transformer ratio is calculated by dividing the primary value by secondary value.
	Secondary	Secondary value of phase currents.	
	Ratio Primary	The value of current transformer ratio specified by the User.	
Neutral current		Primary value of neutral currents.	The value of the neutral current transformer ratio is calculated by dividing the primary value by secondary value.
	Secondary	Secondary value of neutral currents.	
	Ratio	The value of neutral current	transformer ratio specified by the User.

5.3.4. Current direction

Fig. 114. Measurement input - current direction.

Parameter	Description
Reverse current direction L1 - L3	Fields allowing for reversing current direction for the individual phases.

5.3.5. Temperature and resistance

Fig. 115. Measurement input - temperature/resistance.

Parameter	Description
Enabled/Disabl ed	Enables or disables the function of temperature or resistance measurement.
Sensor type Temperature offset	Selection of the type of temperature (Pt100, Pt1000) or resistance sensor.
Wires resistance	Offset values for the measured temperature.
Range	Selection of the range for the selected sensor type. The User can change the standard minimum and maximum values assigned to the selected sensor.

Fig. 116. Measurement input - temperature/resistance.

Parameter	Description
First harmonic number	Selection of the first harmonic for PWHD calculation.
Last harmonic number	Selection of the last harmonic for PWHD calculation.
Averaging time	Averaging time for harmonics and THD values for 1s, 3s, 10min, 2 hours.

5.3.7. External counters.

Fig.117. Measurement input - harmonics.

Parameter	Description
External input no	Allows to select the external input to be configured. After changing the input, the remaining configuration fields will display the currently set parameters.
Input mode	Operating mode selection. Depending on the settings, you can count only pulses or pulses with counters.
Input activity level	Selecting the level for which the input is to be active. The user chooses between Low and High level.
High level time	Time settings for high level: $1 \mathrm{~ms}, 10 \mathrm{~ms}, 100 \mathrm{~ms}, 1 \mathrm{~s}, 100 \mathrm{~s}, 60 \mathrm{~s}$.
Low level time	Time settings for low level: $1 \mathrm{~ms}, 10 \mathrm{~ms}, 100 \mathrm{~ms}, 1 \mathrm{~s}, 100 \mathrm{~s}, 60 \mathrm{~s}$.
Quantity of pulses per $1 \mathrm{~kW} / \mathrm{h}$ Resetting the counters	Selection of calculator for counters. The user sets the number of pulses in the range from 1 to 100,000, which corresponds to $1 \mathrm{~kW} / \mathrm{h}$.
	The selection list allows to choose any counter or all counters. Resetting selected counters will be done after pressing the Delete button.

5.4. Configuration of alarms

The window of alarms configuration allows the User to define up to twelve measurement outputs.

Fig. 118. Alarms - navigation.
Alarm configuration is assigned to a specific number. Navigating between successive alarms is done by means of buttons $\uparrow \downarrow$ or directly via the selection list at the top of the screen.

5.4.1. General settings

Fig. 119. Alarms - general settings.

Parameter	Description
Source	Selection of the alarm source. First, the User selects the parameter group and in the next step, the selected parameter.
Alarm type	Threshold
Range ON	The alarm is activated if Condition ON is fulfilled, deactivated if Condition OFF is fulfilled.
	The alarm is activated if the measured value is within a specified range. Value out of the range causes the alarm activation.
	The alarm is deactivated if the measured value is within a specified range. Value out of the range causes the alarm activation.
Condition ON	The alarm is always turned on.
Condition OFF	Value of alarm activation.

Fig. 120. Alarms - general settings, conditional.
Defining the condition of activation and deactivation the User defines the operator assigned to the condition and its associated value.

5.4.2. Control

Fig. 121. Alarms - control.

$\left.$| Parameter | Description |
| :--- | :--- |
| Set relay
 Confirm
 type | None |
| With | |
| Alarm switching delay | |
| confirmation | | | Assignment of relay to alarm output. |
| :--- |
| Turning off the alarm automatically deletes the information about the |
| occurrence. | | After turning off the alarm, the information about the occurrence remains |
| :--- |
| to be confirmed. | \right\rvert\, | Delay time of switching alarm states. After the event occurrence the |
| :--- |
| alarm is activated or deactivated with the set delay time taken into |
| account. |

5.4.3. E-mail

Fig. 122. Alarms - email.

Parameter	Description
Send when activated	Sending an e-mail with the information when the alarm is activated.
Send when deactivated	Sending an e-mail with the information when the alarm is deactivated.
Recipients	The selection list of the recipients to whom the message is sent. Recipients are defined under the Ethernet tab in the Control Panel.
Message subject	Edit box to define the subject of the e-mail. The default Auto option sends the message with the information about the alarm occurrence together with the ID and a description of the analyzer defined in the General Settings tab.

5.5. Configuration of visualization screens

5.5.1. Screens

Fig. 123. Visualization - screens.

Parameter	Description	
Large digital view	The User selects the type of the screen using the selection list (as shown in the example, or using the buttons located on the right side of the selection list.	
Screen settings	Screen	Disabling this option removes the view from the list of views displaying the measurement values of the screen.
	Data sets	The user can choose sets of views available to the currently selected screen type (in the example - Large digital view). The User can choose from default data sets and data sets defined individually (custom data sets).
Custom data sets	Set name	The user can define their own set name or keep the default name. By means of buttons $\uparrow \downarrow$

Parameters	data sets. This function enables the User to select parameters for the custom data set. The group to which the parameter is assigned is selected first. The user is provided with the information about the parameters selected in the group. For example, designation [2] Voltage indicates that two parameters from the "Voltage" group were selected. Designation [-] indicates the lack of selected options in the group.

5.5.2. Trends

Screens of Trends view possible to be edited depend on the settings made in the tab Visualization \rightarrow Screens \rightarrow Trends.

Fig. 124. Visualization - trends

Parameter	Description	
Scaling	Value	Scaling to the parameter value.
Percentage	Percentage scaling to the nominal value of the parameter range.	
X-axis range	Time range of data presentation on the trends screen.	
Chart type	The method of measured values presentation. Depending on the option selected the data is presented in a steps or lines.	
Background	Selection of background color for the trends screen.	

5.6. Configuration of Ethernet

5.6.1. General settings

Fig. 125. Ethernet - general settings.

Parameter	Description
DHCP	Enables or disables DHCP. When enabled the service of automatic acquiring parameters of Ethernet interface IP protocol from external DHCP servers present within the same LAN is activated.
Device IP	Edit box for changing the IP address.
Subnet mask	Edit box for changing the subnet mask.
Default gateway	Edit box for changing the default gateway.

5.6.2. FTP and WWW Servers Settings

Fig. 126. Ethernet - servers.

Parameter		Description
FTP server WWW server	Disabled	Lack of access to Web or FTP server.
	Users' access	Access requires authorization (login required)
	Anonymous access	Access does not require authorization (no login required)

5.6.3. Mail client settings

5.6.3.1 SMTP configuration

Fig. 127. Ethernet - smtp.

Parameter	Description
Server name Port	Outgoing mail server
	Outgoing mail server port
Username Password	Option to secure the outgoing mail
	Identifies the message sender

5.6.4. E-mail

Fig. 128. Ethernet - email.

Parameter	Description
Source e-mail address	Outgoing mail server
Recipient's e-mail addresses	Lists of recipients' e-mail addresses with edit option. Maximum 10 addresses in the list.
	Adding a new recipient address to the address list or remove the existing address from the list.
Edit	Changing the existing address in the list of recipients.
Send test mail	Sending a test message to the address in the list of recipients.

5.7. Configuration of Modbus

5.7.1 Configuration of Modbus RTU

Fig. 129. Modbus slave.

Parameter	Description
Mode	Specifies the type of transmission frame of RS-485 interface.
	RS-485 interface transmission speed.
ID	The device ID on the Modbus network.
TCP/IP	Enabling or disabling the Modbus TCP/IP mode.
TCP/IP port	Port number of Modbus TCP/IP protocol.
Response delay	Forced delay of response time.

5.7.2 Configuration of Modbus TCP

Fig. 130. Modbus TCP.

Parameter	Description
ID	The device ID on the Modbus network.
	Enabling or disabling the Modbus TCP/IP mode.
TCP/IP port	Port number of Modbus TCP/IP protocol.

5.8. Configuration of archiving

5.8.1. General settings.

Fig. 131. Archiving - general settings.

Option		Description
Number of records in file		Specifies the maximum number of records possible to be saved to the file of archived values.
Enable archiving when		Assigning an alarm enabling archiving (when the alarm is active).
Disable archiving when		Assigning an alarm disabling archiving (when the alarm is active).
Archive only in time	Limit	Enabling this function activates archiving in the assigned time frame.
	From [hh:mm]	The beginning of the specified time frame of archiving.
	To [hh:mm]	The end of the specified time frame of archiving.

5.8.2. Parameters.

Fig.132. Archiving - parameters.

The table lists description of each option to add a new archived parameter.

Option	Description
Parameter	Selection of archived parameter.
Arch. interval	Selecting the archiving interval of the selected parameter.
Conditional archiving	
Operator	
Value	Enabling or disabling conditional archiving.
	Condition of conditional archiving
	Value assigned to the condition of conditional archiving.

Caution! The parameter Value should always be given in standard units (Urms : V, Irms : A itd.).

Sample configuration of archiving of Urms L1 voltage, aggregated every second. The parameter is archived every 10 seconds, conditional archiving is enabled.

First, the User selects the archived parameter and archiving interval.

Fig. 133. Archiving - new parameter.
To set conditional archiving it is necessary to enable it and specify the condition which triggers archiving.

Fig. 134. Archiving - conditional.

The user can edit the configured parameter or create a new one on the basis of the existing one (using the copy option).

Fig. 135. Archiving - options.

5.9. Configuration of safety rules

Fig. 136. Safety - navigation.
Navigating between the Users can be implemented by means of the selection list (turned on by touching the field at the top of the main screen (in the presented example with the currently selected

- Admin), or by means of buttons.

Parameter	Description
User	Enabling or disabling the currently edited user.
Name	Editable user ID. It contains eight defined users. Default names: Admin, User 1, User 2 ... User 7.

Password		Password can be assigned for each user. Password is required to \log in to the configuration settings.
Access rights	Administrator's rights	The authority to change the rights of users.
	Control Panel. access	It is possible to view and edit the parameters of the control panel.
	Context Menu access	It allows the User to confirm alarms in the context menu and additionally gives access to file management and alarms confirmation on the website.
	WWW access	Users' access to the website.
	FTP access	Users' access to FTP server.

5.10. Configuration of power quality

Fig. 137. Power quality - settings.

Option	Description
Dips	Possibility to assign threshold values for the selected parameter and value of
hysteresis. The values are calculated in relation to nominal voltage and expressed as a	
percentage.	
Swells	
Interruptions	

Voltage dip - decrease in voltage to the value specified in the configuration (normally in the range from 90% to 1%) of the declared voltage, after which the voltage increases to the previous value. Usually dip duration ranges from 10 ms to 1 minute.

Fig. 138. Voltage dip.
Voltage swell - a temporary increase in the effective value of the voltage level exceeding a defined tolerance range specified in the configuration (normally 110\%).

Fig. 139. Voltage swell.

Voltage interruption - the state in which the voltage is lower than the voltage defined in configuration (normally less than 1%).

Fig. 140. Voltage interruption.
Event relating to dips, swells and interruptions are recorded in dips logs.

Fig. 141. Power quality - log.

Option	Description
1	The number identifying the sequence of events related to dips.
2	The date of the event occurrence.
3	The time of the event occurrence.
4	The entry containing information about the event. The description includes the type of event, the value of half wave voltage of each phase and duration.
5	Examples of events related to voltage dips, swells and interruptions.

Logs related to dips, swells and interruptions are stored on the SD card. The file containing the current logs is saved as dipswell.log.csv.

Preview a file stored on the SD card is shown below.

```
1 2015-10-22 14:30:10.303 Dip (Urms L2) : L1= 216.376V L2= 202.172V L3= 227.747V czas: 00:00:03.378
2 2015-10-22 14:30:19.631 Swell (Urms L1) : L1= 254.71V L2= 292.273V L3= 251.197V czas: 00:00:04.406
3 2015-10-22 14:30:27.892 Interrupt (Urms L1) : L1=0V L2=0V L3= 0V czas: 00:00:02.029
```

Fig. 142. Power quality - logs.

Each file containing the events logs has a limited maximum size. After it is full another file dipswell.log.csv is created and the previously saved file is changed to dipswell.log.1.csv and when the entries in subsequent events logs are full dipswell.log.2.csv, dipswell.log.3.csv etc.

Additionally, the values preceding the event and the values occurring after the event are stored on the SD card. They are stored in the file dipswellsamples.log.csv.

5.11. Resetting the counters

Energy counters reset screen. The user indicates on the selection list which counters are to be reset. Below, they indicate which types of energy are to be cleared. The command will be carried out after selecting the Clear button.

Fig.143. Resetting the counters.

5.12. Tariff configuration

ND40 analyzer allows the user to select one of two defined tariffs or a tariff set by the user.
Tariff B23

Tariff	$\mathbf{T 1}$	$\mathbf{T} 2$	$\mathbf{T 3}$	$\mathbf{T 4}$
January	$7: 00 \mathrm{am}-1: 00 \mathrm{pm}$	$4: 00 \mathrm{pm}-9: 00 \mathrm{pm}$	$1: 00 \mathrm{pm}-4: 00 \mathrm{pm}$	$9: 00 \mathrm{pm}-7: 00 \mathrm{am}$
February	$7: 00 \mathrm{am}-1: 00 \mathrm{pm}$	$4: 00 \mathrm{pm}-9: 00 \mathrm{pm}$	$1: 00 \mathrm{pm}-4: 00 \mathrm{pm}$	$9: 00 \mathrm{pm}-7: 00 \mathrm{am}$
March	$7: 00 \mathrm{am}-1: 00 \mathrm{pm}$	$4: 00 \mathrm{pm}-9: 00 \mathrm{pm}$	$1: 00 \mathrm{pm}-4: 00 \mathrm{pm}$	$9: 00 \mathrm{pm}-7: 00 \mathrm{am}$
April	$7: 00 \mathrm{am}-1: 00 \mathrm{pm}$	$7: 00 \mathrm{pm}-10: 00 \mathrm{pm}$	$1: 00 \mathrm{pm}-7: 00 \mathrm{pm}$	$10: 00 \mathrm{pm}-7: 00 \mathrm{am}$
May	$7: 00 \mathrm{am}-1: 00 \mathrm{pm}$	$7: 00 \mathrm{pm}-10: 00 \mathrm{pm}$	$1: 00 \mathrm{pm}-7: 00 \mathrm{pm}$	$10: 00 \mathrm{pm}-7: 00 \mathrm{am}$
June	$7: 00 \mathrm{am}-1: 00 \mathrm{pm}$	$7: 00 \mathrm{pm}-10: 00 \mathrm{pm}$	$1: 00 \mathrm{pm}-7: 00 \mathrm{pm}$	$10: 00 \mathrm{pm}-7: 00 \mathrm{am}$
July	$7: 00 \mathrm{am}-1: 00 \mathrm{pm}$	$7: 00 \mathrm{pm}-10: 00 \mathrm{pm}$	$1: 00 \mathrm{pm}-7: 00 \mathrm{pm}$	$10: 00 \mathrm{pm}-7: 00 \mathrm{am}$
August	$7: 00 \mathrm{am}-1: 00 \mathrm{pm}$	$7: 00 \mathrm{pm}-10: 00 \mathrm{pm}$	$1: 00 \mathrm{pm}-7: 00 \mathrm{pm}$	$10: 00 \mathrm{pm}-7: 00 \mathrm{am}$
September	$7: 00 \mathrm{am}-1: 00 \mathrm{pm}$	$7: 00 \mathrm{pm}-10: 00 \mathrm{pm}$	$1: 00 \mathrm{pm}-7: 00 \mathrm{pm}$	$10: 00 \mathrm{pm}-7: 00 \mathrm{am}$
October	$7: 00 \mathrm{am}-1: 00 \mathrm{pm}$	$4: 00 \mathrm{pm}-9: 00 \mathrm{pm}$	$1: 00 \mathrm{pm}-4: 00 \mathrm{pm}$	$9: 00 \mathrm{pm}-7: 00 \mathrm{am}$
November	$7: 00 \mathrm{am}-1: 00 \mathrm{pm}$	$4: 00 \mathrm{pm}-9: 00 \mathrm{pm}$	$1: 00 \mathrm{pm}-4: 00 \mathrm{pm}$	$9: 00 \mathrm{pm}-7: 00 \mathrm{am}$
December	$7: 00 \mathrm{am}-1: 00 \mathrm{pm}$	$4: 00 \mathrm{pm}-9: 00 \mathrm{pm}$	$1: 00 \mathrm{pm}-4: 00 \mathrm{pm}$	$9: 00 \mathrm{pm}-7: 00 \mathrm{am}$

Tariff B22

Tariff	T1	T2	$\mathbf{T 3}$	T4
January	$8: 00 \mathrm{am}-11: 00 \mathrm{am}$	$4: 00 \mathrm{pm}-9: 00 \mathrm{pm}$	$11: 00 \mathrm{am}-4: 00 \mathrm{pm}$	$9: 00 \mathrm{pm}-8: 00 \mathrm{am}$
February	$8: 00 \mathrm{am}-11: 00 \mathrm{am}$	$4: 00 \mathrm{pm}-9: 00 \mathrm{pm}$	$11: 00 \mathrm{am}-4: 00 \mathrm{pm}$	$9: 00 \mathrm{pm}-8: 00 \mathrm{am}$
March	$8: 00 \mathrm{am}-11: 00 \mathrm{am}$	$4: 00 \mathrm{pm}-9: 00 \mathrm{pm}$	$11: 00 \mathrm{am}-6: 00 \mathrm{pm}$	$9: 00 \mathrm{pm}-8: 00 \mathrm{am}$
April	$8: 00 \mathrm{am}-11: 00 \mathrm{am}$	$7: 00 \mathrm{pm}-10: 00 \mathrm{pm}$	$11: 00 \mathrm{am}-7: 00 \mathrm{pm}$	$10: 00 \mathrm{pm}-8: 00 \mathrm{am}$
May	$8: 00 \mathrm{am}-11: 00 \mathrm{am}$	$8: 00 \mathrm{pm}-10: 00 \mathrm{pm}$	$11: 00 \mathrm{am}-8: 00 \mathrm{pm}$	$10: 00 \mathrm{pm}-8: 00 \mathrm{am}$
June	$8: 00 \mathrm{am}-11: 00 \mathrm{am}$	$8: 00 \mathrm{pm}-10: 00 \mathrm{pm}$	$11: 00 \mathrm{am}-8: 00 \mathrm{pm}$	$10: 00 \mathrm{pm}-8: 00 \mathrm{am}$
July	$8: 00 \mathrm{am}-11: 00 \mathrm{am}$	$8: 00 \mathrm{pm}-10: 00 \mathrm{pm}$	$11: 00 \mathrm{am}-8: 00 \mathrm{pm}$	$10: 00 \mathrm{pm}-8: 00 \mathrm{am}$
August	$8: 00 \mathrm{am}-11: 00 \mathrm{am}$	$8: 00 \mathrm{pm}-10: 00 \mathrm{pm}$	$11: 00 \mathrm{am}-8: 00 \mathrm{pm}$	$10: 00 \mathrm{pm}-8: 00 \mathrm{am}$
September	$8: 00 \mathrm{am}-11: 00 \mathrm{am}$	$7: 00 \mathrm{pm}-10: 00 \mathrm{pm}$	$11: 00 \mathrm{am}-7: 00 \mathrm{pm}$	$10: 00 \mathrm{pm}-8: 00 \mathrm{am}$
October	$8: 00 \mathrm{am}-11: 00 \mathrm{am}$	$6: 00 \mathrm{pm}-9: 00 \mathrm{pm}$	$11: 00 \mathrm{am}-6: 00 \mathrm{pm}$	$9: 00 \mathrm{pm}-8: 00 \mathrm{am}$
November	$8: 00 \mathrm{am}-11: 00 \mathrm{am}$	$4: 00 \mathrm{pm}-9: 00 \mathrm{pm}$	$11: 00 \mathrm{am}-4: 00 \mathrm{pm}$	$9: 00 \mathrm{pm}-8: 00 \mathrm{am}$
December	$8: 00 \mathrm{am}-11: 00 \mathrm{am}$	$4: 00 \mathrm{pm}-9: 00 \mathrm{pm}$	$11: 00 \mathrm{am}-4: 00 \mathrm{pm}$	$9: 00 \mathrm{pm}-8: 00 \mathrm{am}$

Fig. 144: Tariff selection.

User tariff settings.

Fig. 145: User tariffs.

5.13. Configuration of outputs

Depending on the version of the analyzer the following options may be available in a limited form. In versions without additional inputs/outputs, none of the options will be available. Version with analog outputs will provide only the first option ((Analog outputs). The second option (Relays) is available for versions with relays (with 8 or 4 relay outputs).

5.13.1. Analog outputs.

Fig. 146. Outputs - analog outputs.

Option The number of the analog output		Description
		Selection of currently configured analog output.
Source		Selection of output source assigned to the analog output.
Type		Selection of range on the analog output.
Input	Low	Lower value (of the input source).
	High	Upper value (of the input source).
Output	Low	Lower value (on the analog output).
	High	Upper value (on the analog output).

5.11.2. Relays.

Fig. 147. Outputs - relays.

Option	Description
The number of the relay	Selection of the relay to be configured.
Active state	This value is set when the condition of alarm occurrence assigned to the given relay is fulfilled.
Safe (default) state	This value is set when the hard linked value is not ready.

6. File manager

The User can edit the files stored on the SD card or USB host on the analyzer by means of the file manager.

Switching to the file management is shown below.

Fig. 148. File manager - navigation.
After selecting the edited resource in the form of an SD card or USB host the User can edit the stored files. The example of selecting a file from the SD card together with the assigned editing options is shown below.

Fig. 149. File manager - selection of files.

Option	Description
Fig. 150. Copy. Fig. 151. Cut. Fig. 152. Delete.	Copies the selected item to any desired location on the memory card.
	Moves the selected item to any desired location on the memory card.
	Deletes the selected item from the memory card.
Fig. 153. Exit.	Exits the file manager.

7. Configuration of WWW

To start the server, the User must configure the Ethernet. The access type must be assigned to the WWW server option. Setting this option to Off prevents the connection with the server.

Caution! Detailed information in section 5.6. Configuration of Ethernet.
Setting Users' access (WWW server fully functional) is possible after setting access rights for individual users.

Caution! Detailed information in section 5.9. Configuration of safety rules.

8. Configuration of FTP

To start the server, the User must configure the Ethernet. The access type must be assigned to the FTP server option. Setting this option to Off prevents the connection with the server.

Caution! Detailed information in section 5.6. Configuration of Ethernet.
Setting Users' access (FTP server fully functional) is possible after setting access rights for individual users. In addition, in the authorized mode a password must be assigned to the User.

Caution! Detailed information in section 5.9. Configuration of safety rules.

9. Data archiving

Configuration of archiving parameters is shown in section 5.8. Configuration of archiving.

Screenshot of the analyzer showing the management window with currently set parameters for archiving.

Fig. 154. Archiving - parameters.

Item	Description
1	Archived parameter.
2	Archiving interval.
3	Conditional archiving - the condition of archiving.
4	Adds a new parameter for archiving.
6	Edits the selected archiving parameter.
Copies the configuration of the selected parameter and saves it as a new parameter for archiving.	
	Deletes the selected archived parameter.
	Confirms the changes.

Downloading archiving files is possible via the Web server (3. Web server management).
Sample file with archived data. 11/12/2015 13_24_21.ND45Arch

The name of the file includes the date and time the file was created. The example describes the last archived file (all records set during the configuration of archiving were full).

After making changes in the configuration of archiving, e.g. by adding new parameters or changing the conditions of archiving, a new file with the time and date of its creation is created.

Archiving files are saved in a format compatible with SQLite.

Each file contains basic information about the archived parameters:

- id - automatically assigned records ID,
- idParameters - parameter identifier that is compatible with the number of parameter defined in the archiving tab \rightarrow parameters,
- dateTime - date and time of the archived parameter,
- value - archived value of the parameter.
- flag - the state of the archived values:

0 - correct measurement
1 - no measurement value
128 - the process of the averaging of values for a given time window is not finished.

The archive files can be read out using a dedicated application PowerArchive (provided by LUMEL), by means of the Web Server (3.2.20 Preview of archive files), or any application that supports the database format compatible with SQLite.

10. Alarms

In the standard version the analyzer of network parameters ND45 is equipped with four relay alarm outputs.

The rules for alarms configuration are described in 5.4 Configuration of alarms.

Fig. 155. Alarms - visualization.

The view on the left shows the operating mode in which no alarm activation event has occurred, the view on the right the operating mode with activated alarm.

Alarm activation changes the color of the information bar at the top of the screen from green to red. Moreover, an additional element is generated 4 .

Fig. 156. Alarms - list.
After selecting the element generated at the time of the alarm activation, the list with currently activated alarms will be displayed.

Fig. 157. Alarms - list of alarms, description.

Option	Description
1	Number of the alarm, set by the User.
2	Value assigned to the alarm. The value of the parameter activates or deactivates the alarm.
3	Type of alarm assigned to the displayed event.
4	Current state of the alarm.
5	Main window with information about alarms occurrence.
6	Function allowing for alarms confirmation.
7	Exit the dialog box.

Fig. 158. Alarms - confirmation.

Confirmation of the selected alarm changes the way the alarm is displayed in the alarm list. The font color and the description of the state of the alarm are changed.
In the event the option to report the state of the alarm in alarms logs was selected in the alarm configuration, the events related to the activation or deactivation of the alarm will be saved.

Fig. 159. Alarms - logs.

Option	Description
1	The number identifying the sequence of events related to alarms.
2	The date of the event occurrence.
3	The time of the event occurrence.
4	The entry containing information about the event. The description contains the identifier of the alarm, the event and the value causing the event.
5	Examples of events related to the alarms.

Alarm logs management is performed as shown in the example below. Option Clear the logs, clears the saved entries from the log window. Option Confirm alarms, redirects to the previously described dialog box where selected alarms can be confirmed. Options to clear and confirm require User's rights confirmation. When this option is selected, a dialog box is displayed in which the User enters the user name and password assigned to the name.

Fig. 160. Alarms - logs management.

Alarms logs are stored on the SD card. The file containing the current logs is saved as alarm.log.csv.

Preview a file stored on the SD card is shown below.

```
1 2016-01-28 13:33:28 Alarm 1 - On (Urms L1 1s = 227.121V) (> 200)
2 2016-01-28 13:33:28 Alarm 2 - On (Urms L2 200ms = 227.117V) (> 210)
```

Fig. 161. Alarms - entries in log file.
Each file containing the alarms logs has a limited maximum size. After it is full another file alarm.log.esv is created and the previously saved file is changed to alarm.log.1.csv and when the entries in subsequent alarms logs are full alarm.log.2.csv, alarm.log.3.csv etc.

11. Construction

Fig. 162. Construction of ND45.

Item	Description
1	Casing of the analyzer.
2	LCD touch screen.
3	USB Host.
4	SD card socket.
4	Door with a lock.
2	USB Device.
7	LED diode.

11.1. Screen

Color LCD TFT screen 5,6-inch, resolution 640x480 pixels, with touch panel.

11.2. RS485 Interface

ND45 analyzer has RS-485 serial interface for communication in computer systems and with other Master devices. Asynchronous char communication protocol MODBUS has been implemented at the serial interface. The data transmission protocol describes methods of information exchange between the devices through the serial interface. The implemented protocol is in accordance with the standard PI-MBUS-300 Rev G of Modicon Company. In section 5.7. Configuration of Modbus we show the configuration of serial port settings.

Parameter	Description
Identifier	0xD8
The address of the meter	The values in the range from 1 to 247
Transmission speed	$1200 \mathrm{bit} / \mathrm{s}, 2400 \mathrm{bit} / \mathrm{s}, 4800 \mathrm{bit} / \mathrm{s}, 9600 \mathrm{bit} / \mathrm{s}, 19200 \mathrm{bit} / \mathrm{s}, 38400 \mathrm{bit} / \mathrm{s}, 57600$ bit/s, $115200 \mathrm{bit} / \mathrm{s}, 230400 \mathrm{bit} / \mathrm{s}$.
Operating mode	Modbus RTU
Information unit	8N2, 8E1, 8O1, 8N1.
Maximum response time	600 ms
The maximum number of read registers	122 registers - 2-byte
Implemented	03, 04 - registers reading (common address space)
	17 - identification of the device

Description of each function with examples is shown below.

Function 04 - readout of n-registers :

Readout of 4 registers 16-bytes of integer type, starting with the register addressed 0001 of float type (2×16 bits).

Request:

Address of the device	Function	Address of the register	Number of registers	Checksum CRC
01	04	0001	0004	200 B

Response

Address of the device	Function	Number of bytes				Values of registers			Checksum CRC
		$\mathbf{0 1}$	$\mathbf{0 2}$	$\mathbf{0 3}$	$\mathbf{0 4}$				
01	04	08	000 A	000 B	0063	0064	DA 39		

Function 03 - readout of n-registers :
Readout of 4 registers 16-bytes, starting with the register addressed 0001.
Request:

Address of the device	Function	Address of the register	Number of registers	Checksum CRC
01	03	0001	0004	15 C 9

Response :

| Address of
 the device | Function | Number | Value from the register | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| of bytes | $\mathbf{0 1}$ | $\mathbf{0 2}$ | $\mathbf{0 3}$ | Checksum CRC | | | |
| 01 | 04 | 08 | 70 A 4 | 41 CD | 0000 | 41 A 2 | 55 CB |

Function 17 - identification of the device :

Request:

Address of the device	Function	Address of the register
01	11	C 02 C

Response :

Address of the device	Function	Number of bytes	Device ID	State of the device	Checksum CRC
01	11	02	D8	FF	A7 7C

11.3. Ethernet Interface

The analyzer of network parameters ND45 is equipped with the Ethernet interface for connecting the meter to a local or global network via the RJ45 socket. The implemented network services supported by the Ethernet interface: Web server, FTP server, Modbus Slave TCP/IP.

Caution! Detailed information on the configuration of the interface on the device is presented in section 5.6. Configuration of Ethernet.

In order to gain access to Ethernet services, the ND45 analyzer must be connected to the network via the RJ45 socket, located in the back of the casing, operating in accordance with TCP/IP protocol.

Description of RJ45 socket diodes function:

- Yellow LED - illuminates when ND45 is properly connected to the Ethernet network 100 Base-T, does not light up when ND45 is not connected to the network or is connected to 10 -Base-T network.
- green LED - Tx/Rx illuminates when the meter sends and receives data, flickers irregularly, when no data is transmitted the diode lights up permanently

Fig. 163. Ethernet.

In order to connect ND45 to the network the User should use twisted pair cable.

- U/FTP - twisted pair cable with each pair foiled,
- F/FTP - twisted pair cable with each pair foiled, additionally cable with foil shield,
- S/FTP (formerly SFTP) - twisted pair cable with each pair foiled, additionally cable with wire mesh shield,
- SF/FTP (formerly S-STP) - twisted pair cable with each pair foiled, additionally with foil and wire mesh shield,

Conduct or no.	Signal	Conductor color acc. to standard	
1		EIA/TIA 568A	EIA/TIA 568B
2	TX +	white-green	white-orange
3	TX-	green	orange
4	RX+	white-orange	white-green
5	EPWR +	blue	blue
6	EPWR +	white-blue	white-blue
7	RX-	orange	green
8	EPWR-	white-brown	white-brown
	EPWR-	brown	brown

Categories of twisted pair cable according to the European standard EN 50171 minimum: Class D (category 5) - for high-speed local area networks, includes applications using the frequency band up to 100 MHz . For Ethernet interface the User should use twisted pair cable of STP type (shielded) category 5 with RJ-45 connector with conductors colors (in accordance with the colors described in the table) acc. to the following standard:

- EIA/TIA 568A for both connectors at the so-called simple connection of ND45 to the network hub or switch,
- EIA/TIA 568A the first connector and EIA/TIA 568B for the second connector at the socalled patch cord connection (crossover) used, among others, when connecting ND45 to the computer.

11.4. USB Interface

The analyzer has two USB interfaces. USB Host and USB Device.
Using the USB Host interface the User can copy files between the SD card and the device connected to the USB Host. USB Device acts as a dummy connector.

11.5. SD memory card

Standard data carrier in ND45 analyzer is SD card up to 32 GB.
The SD card is used for storage of archive data (depending on configuration), alarm logs, audit logs and logs of events related to dips, swells and interruptions.

All data files of archive data and logs first are first stored in the analyzer's internal memory (up to 20 MB). After saving the file in internal memory, it is transferred to the SD card.

If ND45 is operated without an SD card installed, all files (currently saved and those that have already been completed) are stored in the internal memory. After installing the card, all completed files will be transferred from the internal memory.

Caution! In case of power failure, up to 1 MB of data stored in the internal memory will be preserved.

Access to the SD card from ND45 is possible using the Web server (Chapter 3), FTP server (Chapter 4) or the incorporated file manager (Chapter 6).

12. Technical data

12.1. Measurements

Basic error with respect to the nominal value.

Neutral		2 hours		$\begin{aligned} & \pm 0,1 \% \\ & \text { In } \end{aligned}$	$\begin{gathered} \pm 0,2 \% \\ \text { In } \end{gathered}$	Class A ${ }^{1)}$	Class S
	IN	200 ms	$\begin{aligned} & \text { In }=5 \mathrm{~A}: \\ & 0,050 \ldots 7,5 \mathrm{~A}(\mathrm{Ki}=1) \\ & \ldots 150,0 \mathrm{kA}(\mathrm{Ki} \neq 1)^{2} \\ & \mathrm{In}=1 \mathrm{~A}: \\ & 0,010 \ldots 1,5 \mathrm{~A}(\mathrm{Ki}=1) \\ & \ldots 90,0 \mathrm{kA}(\mathrm{Ki} \neq 1)^{2} \end{aligned}$	$\pm 0,5 \%$ In		Class S	
		1 s		± 0	In		
		3 s		± 0	\% In		
		10 min		± 0	In		
		2 hours			\% In		
Neutral countable	INC	200 ms	$\begin{aligned} & \text { In }=5 \mathrm{~A}: \\ & 0,150 \ldots 22,5 \mathrm{~A}(\mathrm{Ki}=1) \\ & \ldots 450,0 \mathrm{kA}(\mathrm{Ki} \neq 1)^{2} \\ & \text { In }=1 \mathrm{~A}: \\ & 0,030 \ldots 4,5 \mathrm{~A}(\mathrm{Ki}=1) \\ & \ldots 450,0 \mathrm{kA}(\mathrm{Ki}=1)^{2} \end{aligned}$	$\pm 0,2 \%$ In			
		1 s					
		3 s					
		10 min					
		2 hours					
Harmonics	Har1 IL1 ... Har51 IL1, Har1 IL2 ... Har51 IL2, Har1 IL3 ... Har51 IL3.	1 s	0.00...100.00\%	$\begin{array}{r} \mathrm{I}_{\mathrm{m}} \geq 3 \\ \pm 5 \\ \mathrm{I}_{\mathrm{m}}<3 \\ \pm 0.15 \end{array}$	$\begin{aligned} & \% \mathrm{I}_{\text {nom }} \\ & \% \mathrm{I}_{\mathrm{m}} \\ & \% \mathrm{I}_{\text {nom }} \\ & \% \mathrm{I}_{\text {nom }} \end{aligned}$	Cla	ss I
Interharmonics	IHar1 IL1 ... IHar51 IL1, IHar1 IL2 ... IHar51 IL2, IHar1 IL3 ... IHar51 IL3.	1 s	0.00...100.00\%	$\pm 5 \%{ }^{7}$			
Distortion factor	THD I L1, THD I L2, THD I L3, THD Iavg L123.	1 s	0.00...200.00\%		$\%{ }^{7}$		
Harmonics groups distortion factor	$\begin{aligned} & \text { THDS I L1, } \\ & \text { THDS I L2, } \\ & \text { THDS I L3, } \\ & \text { THDS Iavg } \\ & \text { L123. } \end{aligned}$	1 s	0.00...200.00\%		\% ${ }^{7}$		
Harmonics sub-groups distortion factor	THDG I L1, THDG I L2, THDG I L3, THDG Iavg L123.	1 s	0.00...200.00\%		\% ${ }^{7}$		
Partially weighted	PWHD I L1, PWHD I L2,	1 s	0.00...200.00\%		\% ${ }^{7}$		

distortion factor	PWHD I L3, PWHD Iavg L123.				
Demand	I Demand	15 min	$\begin{aligned} & \text { In }=5 \mathrm{~A}: \\ & 0,050 \ldots 7,5 \mathrm{~A}(\mathrm{Ki}=1) \\ & \ldots 150,0 \mathrm{kA}(\mathrm{Ki} \neq 1) \\ & \mathrm{In}=1 \mathrm{~A}: \\ & 0,010 \ldots 1,5 \mathrm{~A}(\mathrm{Ki}=1) \\ & \ldots 150,0 \mathrm{kA}(\mathrm{Ki} \neq 1) \end{aligned}$	$\pm 0.2 \%$ In	
		30 min			
		1 hour			
Power					
Active imported power	$\begin{aligned} & \mathrm{EnP}+\mathrm{L} 1, \\ & \mathrm{EnP}+\mathrm{L} 2, \\ & \mathrm{EnP}+\mathrm{L} 3, \\ & \sum \mathrm{EnP}+\mathrm{L} 123 . \end{aligned}$	-	$\begin{aligned} & \text { L1, L2, L3 : } \\ & 0 \ldots 3 \mathrm{e}+3 \text { Gwh } \\ & \text { L123: } \\ & 0 \ldots 9 \mathrm{e}+3 \text { Gwh } \end{aligned}$	$\pm 0.5 \%{ }^{7}$	
Active exported power	$\begin{aligned} & \text { EnP - L1, } \\ & \text { EnP - L2, } \\ & \text { EnP - L3, } \\ & \sum \text { EnP - L123. } \end{aligned}$	-	$\begin{aligned} & \text { L1, L2, L3 : } \\ & 0 \ldots 3 \mathrm{e}+3 \mathrm{Gwh} \\ & \text { L123: } \\ & 0 \ldots 9 \mathrm{e}+3 \text { Gwh } \end{aligned}$	$\pm 0.5 \%{ }^{7}$	
Reactive imported energy	$\begin{aligned} & \mathrm{EnQ}+\mathrm{L} 1, \\ & \mathrm{EnQ}+\mathrm{L} 2, \\ & \mathrm{EnQ}+\mathrm{L} 3, \\ & \sum \mathrm{EnQ}+\mathrm{L} 123 . \end{aligned}$	-	$\begin{aligned} & \text { L1, L2, L3 : } \\ & 0 \ldots 3 \mathrm{e}+3 \text { GVArh } \\ & \text { L123: } \\ & 0 \ldots 9 \mathrm{e}+3 \text { GVArh } \end{aligned}$	$\pm 0.5 \%{ }^{7}$	
Reactive exported energy	$\begin{aligned} & \text { EnQ - L1, } \\ & \text { EnQ - L2, } \\ & \text { EnQ - L3, } \\ & \sum \text { EnQ - L123. } \end{aligned}$	-	$\begin{aligned} & \text { L1, L2, L3 : } \\ & 0 \ldots 3 \mathrm{e}+3 \text { GVArh } \\ & \text { L123: } \\ & 0 \ldots 9 \mathrm{e}+3 \text { GVArh } \end{aligned}$	$\pm 0.5 \%{ }^{7}$	
Apparent energy	EnS L1, EnS L2, EnS L3, $\sum \mathrm{EnS}$ L123.	-	$\begin{aligned} & \text { L1, L2, L3: } \\ & 0 \ldots . .3 \mathrm{e}+3 \text { GVArh } \\ & \text { L123: } \\ & 0 \ldots . .9 \mathrm{e}+3 \text { GVArh } \end{aligned}$	$\pm 0.5 \%{ }^{7}$	
Active power	P L1, PL2, P L3, Pavg L123, \sum P L123.	200 ms	$\begin{aligned} & \text { In }=5 \mathrm{~A}, \mathrm{Un}=230 \mathrm{~V}: \\ & -2587,5 \ldots 2587,5 \mathrm{~W} \\ & (\mathrm{Ki}=1, \mathrm{Ku}=1) \\ & \mathrm{In}=1 \mathrm{~A}, \mathrm{Un}=230 \mathrm{~V}: \\ & -517,3 \ldots 517,3 \mathrm{~W}(\mathrm{Ki}=1, \mathrm{Ku}=1) \\ & \mathrm{In}=5 \mathrm{~A}, \mathrm{Un}=57,7 \mathrm{~V}: \\ & -525 \ldots 525 \mathrm{~W}(\mathrm{Ki}=1, \mathrm{Ku}=1) \\ & \mathrm{In}=1 \mathrm{~A}, \mathrm{Un}=57,7 \mathrm{~V}: \\ & -105 \ldots 105 \mathrm{~W}(\mathrm{Ki}=1, \mathrm{Ku}=1) \end{aligned}$	$\pm 0.5 \%{ }^{7}$	
		1 s			
		3 s			
		10 min			
		2 hours			
Reactive power	$\begin{aligned} & \text { Q L1, } \\ & \text { Q L2, } \\ & \text { Q L3, } \\ & \text { Qavg L123, } \\ & \text { EQ L123. } \end{aligned}$	200 ms	$\begin{aligned} & \text { In }=5 \mathrm{~A}, \mathrm{Un}=230 \mathrm{~V}: \\ & -2587,5 \ldots 2587,5 \mathrm{~W} \\ & (\mathrm{Ki}=1, \mathrm{Ku}=1) \\ & \mathrm{In}=1 \mathrm{~A}, \mathrm{Un}=230 \mathrm{~V}: \\ & -517,3 \ldots 517,3 \mathrm{~W}(\mathrm{Ki}=1, \mathrm{Ku}=1) \\ & \mathrm{In}=5 \mathrm{~A}, \mathrm{Un}=57,7 \mathrm{~V}: \\ & -525 \ldots 525 \mathrm{~W}(\mathrm{Ki}=1, \mathrm{Ku}=1) \\ & \mathrm{In}=1 \mathrm{~A}, \mathrm{Un}=57,7 \mathrm{~V}: \\ & -105 \ldots 105 \mathrm{~W}(\mathrm{Ki}=1, \mathrm{Ku}=1) \\ & \hline \end{aligned}$	$\pm 0.5 \%{ }^{7}$	
		1 s			
		3 s			
		10 min			
		2 hours			

	dPFavg L123.	10 min					
		2 hours					
Active power	PF L1,	200 ms					
factor	PF L2,	1 s					
	PFavg L123.	3 s	-1... 1		$5 \%{ }^{7}$		
		10 min					
		2 hours					
$\operatorname{tg} \varphi$ factor	$\operatorname{tg} \varphi \mathrm{L} 1$,	200 ms					
	$\operatorname{tg} \varphi \mathrm{L} 2,$	1 s					
	tg بavg L123.	3 s	$-10 \ldots 10$		\% ${ }^{7}$		
		10 min					
		2 hours					
Angle between	$\varphi \mathrm{L} 1$,	200 ms					
the voltage and	$\varphi \mathrm{L} 2$	1 s					
	بavg L123.	3 s	$-180^{\circ} \ldots 180^{\circ}$		$5 \%{ }^{7}$		
		10 min					
		2 hours					
Voltage phase-	ষ U L1-2,	200 ms	$\mathrm{Un}=230 \mathrm{~V}$:				
to-phase angle	$\Varangle \text { U L2-3, }$	1 s	$40,0 \ldots 600,0 \mathrm{~V}(\mathrm{Ku}=1)$				
	ষU L3-1.	3 s	$\begin{aligned} & \ldots .2,39 \mathrm{MV}(\mathrm{Ku}=1)^{2} \\ & \mathrm{Un}=100 \mathrm{~V}: \end{aligned}$		$5 \%{ }^{7}$		
		10 min	$10,0 \ldots 120,0 \mathrm{~V}(\mathrm{Ku}=1)$				
		2 hours	$\ldots 480 \mathrm{kV}(\mathrm{Ku} \neq 1)^{2}$				
Temperature / Resistance	$\begin{aligned} & \text { T1, } \\ & \text { T2 } \end{aligned}$	1s	Pt100: - $200 \ldots . .850^{\circ}$ Pt1000: - $200 \ldots . . .850^{\circ}$ Resistance: $0 \ldots . .5000 \Omega$		$2 \%{ }^{7}$		
Dip	Swell	$\mathrm{f}=50 \mathrm{~Hz}$	$\mathrm{Un}=\mathrm{Udin}=230 \mathrm{~V}$:				
Swell	Dip	$\left.\right\|_{\mathrm{f}=60 \mathrm{~Hz}} ^{10 \mathrm{~m}^{2}}$	$23,0 \ldots 345,0 \mathrm{~V}(\mathrm{Ku}=1)$				
	Interrupt		$\begin{aligned} & \mathrm{Un}=57,7 \mathrm{~V}: \\ & 5,7 \ldots 70 \mathrm{~V}(\mathrm{Ku}=1) \\ & \ldots . .280 \mathrm{kV}(\mathrm{Ku} \neq 1) \end{aligned}$	Udin ${ }^{1}$	$\begin{aligned} & \pm 1 \% \\ & \text { Udin }^{11} \end{aligned}$	Class A	Class S

1. Basic error with respect to the Udin value acc. to EN-61000-4-30.
2. Range $\mathrm{Ku}=1$... 4000.0 and $\mathrm{Ki}=1$... 20,000.0 .
3. Udin - value obtained from the declared supply voltage Uc = Un by the transformer ratio, according to PN-EN-61000-4-30.
4. Im, , Um - measured values of currents and voltages according to EN-61000-4-7.
5. Inom , Unom - nominal values of currents and voltages according to EN-61000-4-7.
6. In , Un - nominal values of currents and voltages according to EN-61000-4-30.
7. Basic error iwith respect to the full measurement range.

12.2. Extension cards

Availability of inputs/outputs depends on the ordered version of the analyzer.

12.2.1 Analog outputs

Type:	3 galvanically isolated current outputs
Output signal:	$0 / 4 \ldots 20 \mathrm{~mA}$
Output basic error:	0.5%
Load resistance:	$\leq 500 \Omega$
Isolation:	500 V dc
Response time:	200 ms

12.2.2 6 galvanically isolated binary inputs

Type:	6 galvanically isolated current outputs
Output signal:	$0 / 4 \ldots 20 \mathrm{~mA}$
Output basic error:	$\pm 0.1 \%$ of measuring range
Load resistance:	$\leq 500 \Omega$
Isolation:	500 V dc
Response time:	200 ms

12.2.3 Binary inputs

Type:	2 groups of 3 digital inputs with common ground
Control signal:	$0 / 5 \ldots .24 \mathrm{~V} \mathrm{dc}$
Switching frequency:	Up to 4 Hz input voltage from range $+5 \ldots .24 \mathrm{~V} \mathrm{dc}$ Up to 500 Hz input voltage from range $+8 \ldots 24 \mathrm{~V} \mathrm{dc}$
	500 V dc

12.2.4. Alarm outputs

Type:	8 or 4 programmable electromagnetic relays, normally open (NO)
Voltage of contacts / current of load:	$\leq 250 \mathrm{~V} \mathrm{ac} / 1.5 \mathrm{~A}$
	$\leq 30 \mathrm{~V} \mathrm{dc} / 1 \mathrm{~A}$

12.3. Reference conditions and rated operating conditions

Storage conditions temperature and humidity)	Temperature $:-20 \ldots 50^{\circ} \mathrm{C}\left(-4 \ldots 122^{\circ} \mathrm{F}\right)$ Humidity : below $75 \% \mathrm{RH}($ without condensation)
Operating conditions temperature and humidity)	Temperature $: 0 \ldots 50^{\circ} \mathrm{C}\left(32 \ldots 122^{\circ} \mathrm{F}\right)$ Humidity $: 75 \% \mathrm{RH}($ without condensation)
Power supply	$85 \ldots 253 \mathrm{~V} \mathrm{ac}, 40 \ldots 400 \mathrm{~Hz}$ $90 \ldots 300 \mathrm{~V} \mathrm{dc}$
Maximum power consumption in the circuit	supply $\leq 20 \mathrm{VA}$ voltage $\leq 0.2 \mathrm{VA}$ current $\leq 0.2 \mathrm{VA}$
Acceptable crest factor	Current measurement: 2 Voltage measurement: 2
Resistance to dust and	IP65 - from the front side IP20 - from the terminal side

12.4. Operating safety according to EN 61010-1, basic insulation

Installation category	III
Degree of pollution Insulation voltage relative to earth	RS485: $500 \mathrm{~V} \mathrm{ac} / \mathrm{dc}$ Ethernet : $250 \mathrm{~V} \mathrm{ac} / 500 \mathrm{~V}$ dc Temperature measurement input: $500 \mathrm{~V} \mathrm{ac} / \mathrm{dc}$ Voltage input: $2140 \mathrm{~V} \mathrm{ac} / \mathrm{dc}$ Power and relay outputs circuits: $2140 \mathrm{~V} \mathrm{ac} / \mathrm{dc}$ Analog outputs: $500 \mathrm{~V} \mathrm{ac} / \mathrm{dc}$ Binary inputs: $1200 \mathrm{~V} \mathrm{ac} / \mathrm{dc}$
Maximum operating voltage relative to earth	For power and relay outputs circuits: 300 V For measurement input: 500 V For RS485 circuits, Ethernet, relay outputs, analog outputs and binary inputs: 50 V
Height above the sea	$<2000 \mathrm{~m}$
level	

12.5. Electromagnetic compatibility

Electromagnetic emissions	conforms EN 61000-6-4
Interference immunity	conforms EN 61000-6-2

12.6. Assembly

Dimensions	144 Width $\times 144$ Height $\times 90$ Depth $\mathrm{mm}\left(5.669^{\prime \prime}\right.$ Width $\times 5.669^{\prime \prime}$ Height \times $3,897 "$ Depth $)$
Dimensions of mounting hole	$138^{-0,5}$ Width $\times 138^{-0,5}$ Height $\mathrm{mm}\left(5.433^{-0,02 " \prime}\right.$ Width $\times 5.433^{-0,02^{\prime \prime}}$ Height $)$
Weight	$1.6 \mathrm{~kg}(5.44 \mathrm{oz})$.

12.7. Conformity with standards

EN 61010	Operational safety
EN 61000-6-4	Electromagnetic compatibility
EN 61000-6-2	
EN 50160	
EN 61000-4-30	
EN 61000-4-7	Measurements and parameters recounting
EN 61557	

12.8. Tables of registers

In ND45 analyzer data is placed in 16 and 32 -bit registers. Bits in 16-bit registers are numbered from the youngest to the oldest (b0 ... b15). 32-bit registers (4 bytes, 2×16 bits) contain float registers with bytes placed as follows: B4 B3 B2 B1.

Caution! All given addresses are physical addresses. In some computer programs, logical addressing is applied, then addresses must be increased by 1 .

The map pf ND45 registers is presented below.

Address range	Register type	Description
$0000-0013$	Integer (16 bytes)	Information and status registers
$0050-0170$		Parameters measured with aggregation of 200 ms.
$0200-0320$		Parameters measured with aggregation of 1 s.

0350-0470	Float (2×16 bytes)	Parameters measured with aggregation of 3 s .
0500-0620		Parameters measured with aggregation of 10 min .
0650-0770		Parameters measured with aggregation of 2 h .
0800-0808		Parameters averaged in time (Demand).
0818-0826		Frequency, temperature/resistance.
0852-0862		Statuses of binary inputs.
0900-1008		Energy meters.
1050-1112		Factors THD, THDG, THDS, PWHD.
1150-1760		Harmonics.
2380-2522		Half wave voltages.
2580-2799	Integer (16 bytes)	Dips, dips, increases.
2800-2822	Float (2×16 bytes)	Pulse counters.
2850-3296		Tarifs.

12.8.1. Information and status registers

Register	Parameter	3Ph / 4W	3Ph /3W
0000	Device ID	\checkmark	\checkmark
0001	Version of the main program	\checkmark	\checkmark
0002	Version of the measurement card program	\checkmark	\checkmark
0003	Status 1	\checkmark	\checkmark
0004	Status 2	\checkmark	\checkmark
0005	Status 3	\checkmark	\checkmark
0006	Time: seconds	\checkmark	\checkmark
0007	Time: hours and minutes (hour *100 + minutes)	\checkmark	\checkmark
0008	Date: month and day (month * $100+$ day)	\checkmark	\checkmark
0009	Date: year	\checkmark	\checkmark
0010	Serial number	\checkmark	\checkmark
0011	Serial number	\checkmark	\checkmark
0012	Password confirming the invocation of the CMD command	\checkmark	\checkmark
0013	CMD command assignment number	\checkmark	\checkmark

12.8.2 CMD commands

To execute the command, the correct security password must be set in register 12 .

Command	
Description	
1	Active imported energy L1
2	Active imported energy L2
3	Active imported energy L3 energy counters
4	Active imported energy L123
5	Active exported energy L1
6	Active exported energy L2
7	Active exported energy L3
8	Active exported energy L123
9	Active imported \& exported energy L123
11	Reactive imported inductive energy L1
12	Reactive imported inductive energy L2
13	Reactive imported inductive energy L3
14	Reactive imported inductive energy L123
15	Reactive exported inductive energy L1
16	Reactive exported inductive energy L2
17	Reactive exported inductive energy L3
18	Reactive exported inductive energy L123
19	Reactive imported \& exported inductive energy L123
21	Reactive imported capacitive energy L1
22	Reactive imported capacitive energy L2
23	Reactive imported capacitive energy L3
24	Reactive imported capacitive energy L123
25	Reactive exported capacitive energy L1
26	Reactive exported capacitive energy L2
27	Reactive exported capacitive energy L3
28	Reactive exported capacitive energy L123
29	Reactive imported \& exported capacitive energy L123
31	Apparent energy L1
32	Apparent energy L2
33	Apparent energy L3
34	Apparent energy L123

12.8.3. Status registers

Status 1

Bit no.	Description
0	No synchronization
1	Phase connection sequence error
2	Filled queue of measurement card
	Calibration parameters error

Status 2

Bit no.	Description
0	Lower overrun UL1
1	Upper overrun UL1
2	Lower overrun UL2
3	Upper overrun UL2
4	Lower overrun UL3
	Upper overrun UL3

Status 3

Bit no.	Description
0	Lower overrun IL1
1	Upper overrun IL1
2	Lower overrun IL2
3	Upper overrun IL2
4	Lower overrun IL3
5	Upper overrun IL3

12.8.4. Parameters measured with aggregation of 200 ms

Register	Parameter		Symbol		Unit	$\begin{aligned} & 3 \mathrm{Ph} / \\ & 4 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 3 \mathrm{Ph} / \\ & 3 \mathrm{~W} \end{aligned}$
0050	Voltage RMS	L1	Urms	L1	V	\checkmark	\times
0052	Current RMS		Irms		A	\checkmark	\checkmark
0054	Primary voltage		Ufund		V	\checkmark	\times
0056	Active power		P		W	\checkmark	\times
0058	Reactive power		Q		var	\checkmark	\times
0060	Apparent power		S		VA	\checkmark	\times
0062	Power distortion factor		dPF		-	\checkmark	\times
0064	Active power factor		PF		-	\checkmark	\times
0066	$\operatorname{tg} \varphi$ factor		$\operatorname{tg} \varphi$		-	\checkmark	\times
0068		ved					
0070	Angle between the voltage and current	L1	φ	L1	rad	\checkmark	\times
0072	Angle between the voltage and current		φ		-	\checkmark	\times
0074	Voltage RMS		Urms		V	\checkmark	\times
0076	Current RMS		Irms		A	\checkmark	\checkmark
0078	Primary voltage		Ufund		V	\checkmark	\times
0080	Active power		P		W	\checkmark	\times
0082	Reactive power	L2	Q	L2	var	\checkmark	\times
0084	Apparent power		S		VA	\checkmark	\times
0086	Power distortion factor		dPF		-	\checkmark	\times
0088	Active power factor		PF		-	\checkmark	\times
0090	$\operatorname{tg} \varphi$ factor		$\operatorname{tg} \varphi$		-	\checkmark	\times
0092		rved					
0094	Angle between the voltage and current	L2	φ	L2	rad	\checkmark	\times
0096			φ		-	\checkmark	\times
0098	Voltage RMS		Urms		V	\checkmark	\times
0100	Current RMS		Irms		A	\checkmark	\checkmark
0102	Primary voltage		Ufund		V	\checkmark	\times
0104	Active power		P		W	\checkmark	\times
0106	Reactive power	L3	Q	L3	var	\checkmark	\times
0108	Apparent power		S		VA	\checkmark	\times
0110	Power distortion factor		dPF		-	\checkmark	\times
0112	Active power factor		PF		-	\checkmark	\times
0114	$\operatorname{tg} \varphi$ factor		$\operatorname{tg} \varphi$		-	\checkmark	\times

0116	Reserved						
0118	Angle between the voltage and current	L3	φ	L3	rad	\checkmark	\times
0120			φ		-	\checkmark	\times
0122	Average voltage	L123	Uavg	L123	V	\checkmark	\times
0124	Average current		I avg		A	\checkmark	\times
0126	Average primary voltage		Ufavg		V	\checkmark	\times
0128	Active power sum		IP		W	\checkmark	\checkmark
0130	Sum of reactive power		$\Sigma \mathrm{Q}$		var	\checkmark	\checkmark
0132	Sum of apparent power		$\Sigma \mathrm{S}$		VA	\checkmark	\checkmark
0134	Average value of power distortion factor		dPFavg		-	\checkmark	\times
0136	Average value of active power factor		PFavg		-	\checkmark	\checkmark
0138	Average value of $\operatorname{tg} \varphi$ factor		tgpavg		-	\checkmark	\times
0140	Phase-to-phase voltage L1-2		Umf L1-2		V	\checkmark	\checkmark
0142	Phase-to-phase voltage L2-3		Umf L2-3		V	\checkmark	\checkmark
0144	Phase-to-phase voltage L3-1		Umf L3-1		V	\checkmark	\checkmark
0146	Average phase-to-phase voltage	L123	Umf avg	L123	V	\checkmark	\checkmark
0148	Average active power		Pavg		W	\checkmark	\times
0150	Average reactive power		Qavg		var	\checkmark	\times
0152	Average apparent power		Savg		VA	\checkmark	\times
0154	Current in neutral wire		IN		A	\checkmark	\times
0156	Recalculated current in neutral wire		INC		A	\checkmark	\times
0158	Average value of angle between voltage and current	L123	φ avg	L123	rad	\checkmark	\times
0160			φ avg		-	\checkmark	\times
0162	Voltage phase-to-phase angle L1-2		* U L1-2		-	\checkmark	\checkmark
0164	Voltage phase-to-phase angle L2-3		* U L2-3		-	\checkmark	\checkmark
0166	Voltage phase-to-phase angle L3-1		\pm U L3-1		-	\checkmark	\checkmark
0168	Average value of phase-to-phase angle		* U avg L123		-	\checkmark	\checkmark
0170	Voltage asymmetry		Vunb		\%	\checkmark	\checkmark

4300	Voltage RMS - MAX	Urms	L1	V	\checkmark	\times
4302	Voltage RMS - MIN	Urms		V	\checkmark	\times
4304	Current RMS - MAX	Irms		A	\checkmark	\checkmark
4306	Current RMS - MIN	Irms		A	\checkmark	\checkmark
4308	Primary voltage - MAX	Ufund		V	\checkmark	\times
4310	Primary voltage - MIN	Ufund		V	\checkmark	\times
4312	Active power - MAX	P		W	\checkmark	\times

4314	Active power - MIN	P	W	\checkmark	\times
4316	Reactive power - MAX	Q	var	\checkmark	\times
4318	Reactive power - MIN	Q	var	\checkmark	\times
4320	Apparent power - MAX	S	VA	\checkmark	\times
4322	Apparent power - MIN	S	VA	\checkmark	\times
4324	Voltage RMS - MAX	Urms	V	\checkmark	\times
4326	Voltage RMS - MIN	Urms	V	\checkmark	\times
4328	Current RMS - MAX	Irms	A	\checkmark	\checkmark
4330	Current RMS - MIN	Irms	A	\checkmark	\checkmark
4332	Primary voltage - MAX	Ufund	V	\checkmark	\times
4334	Primary voltage - MIN	Ufund	V	\checkmark	\times
4336	Active power - MAX	P	W	\checkmark	\times
4338	Active power - MIN	P	W	\checkmark	\times
4340	Reactive power - MAX	Q	var	\checkmark	\times
4342	Reactive power - MIN	Q	var	\checkmark	\times
4344	Apparent power - MAX	S	VA	\checkmark	\times
4346	Apparent power - MIN	S	VA	\checkmark	\times

4348	Voltage RMS - MAX	Urms
4350	Voltage RMS - MIN	Urms
4352	Current RMS - MAX	Irms
4354	Current RMS - MIN	Irms
4356	Primary voltage - MAX	Ufund
4358	Primary voltage - MIN	Ufund
4360	Active power - MAX	P
4362	Active power - MIN	P
4364	Reactive power - MAX	Q
4366	Reactive power - MIN	Q
4368	Apparent power - MAX	S
4370	Apparent power - MIN	S

L3	V	\checkmark	\times
	V	\checkmark	\times
	A	\checkmark	\checkmark
	A	\checkmark	\checkmark
	V	\checkmark	\times
	V	\checkmark	\times
	W	\checkmark	\times
	W	\checkmark	\times
	var	\checkmark	\times
	var	\checkmark	\times
	VA	\checkmark	\times
	VA	\checkmark	\times

12.8.5. Parameters measured with aggregation of 1 s

4400	Voltage RMS - MAX	Urms	L1	V	\checkmark	\times
4402	Voltage RMS - MIN	Urms		V	\checkmark	\times
4404	Current RMS - MAX	Irms		A	\checkmark	\checkmark
4406	Current RMS - MIN	Irms		A	\checkmark	\checkmark
4408	Primary voltage - MAX	Ufund		V	\checkmark	\times
4410	Primary voltage - MIN	Ufund		V	\checkmark	\times

4412	Active power - MAX	P	W	\checkmark	\times
4414	Active power - MIN	P	W	\checkmark	\times
4416	Reactive power - MAX	Q	var	\checkmark	\times
4418	Reactive power - MIN	Q	var	\checkmark	\times
4420	Apparent power - MAX	S	VA	\checkmark	\times
4322	Apparent power - MIN	S	VA	\checkmark	\times
4424	Voltage RMS - MAX	Urms	V	\checkmark	\times
4426	Voltage RMS - MIN	Urms	V	\checkmark	\times
4428	Current RMS - MAX	Irms	A	\checkmark	\checkmark
4430	Current RMS - MIN	Irms	A	\checkmark	\checkmark
4432	Primary voltage - MAX	Ufund	V	\checkmark	\times
4434	Primary voltage - MIN	Ufund	V	\checkmark	\times
4436	Active power - MAX	P	W	\checkmark	\times
4438	Active power - MIN	P	W	\checkmark	\times
4440	Reactive power - MAX	Q	var	\checkmark	\times
4442	Reactive power - MIN	Q	var	\checkmark	\times
4444	Apparent power - MAX	S	VA	\checkmark	\times
4346	Apparent power - MIN	S	VA	\checkmark	\times
4448	Voltage RMS - MAX	Urms	V	\checkmark	\times
4450	Voltage RMS - MIN	Urms	V	\checkmark	\times
4452	Current RMS - MAX	Irms	A	\checkmark	\checkmark
4454	Current RMS - MIN	Irms	A	\checkmark	\checkmark
4456	Primary voltage - MAX	Ufund	V	\checkmark	\times
4458	Primary voltage - MIN	Ufund	V	\checkmark	\times
4460	Active power - MAX	P	W	\checkmark	\times
4462	Active power - MIN	P	W	\checkmark	\times
4464	Reactive power - MAX	Q	var	\checkmark	\times
4466	Reactive power - MIN	Q	var	\checkmark	\times
4468	Apparent power - MAX	S	VA	\checkmark	\times
4370	Apparent power - MIN	S	VA	\checkmark	\times

12.8.6. Parameters measured with aggregation of $\mathbf{3} \mathbf{s}$

0416	Reserved						
0418	Angle between the voltage and current	L3	φ	L3	rad	\checkmark	\times
0420			φ			\checkmark	\times
0422	Average voltage		Uavg		V	\checkmark	\times
0424	Average current		I avg		A	\checkmark	\checkmark
0426	Average primary voltage		Ufavg		V	\checkmark	\times
0428	Sum of active power	L123	IP	L123	W	\checkmark	\times
0430	Sum of reactive power		LQ		var	\checkmark	\times
0432	Sum of apparent power		IS		VA	\checkmark	\times
0434	Average value of power distortion factor		dPFavg		-	\checkmark	\times
0436	Average value of active power factor		PFavg		-	\checkmark	\times
0438	Average value of $\operatorname{tg} \varphi$ factor		\|tgeavg		-	\checkmark	\times
0440	Phase-to-phase voltage L1-2		Umf L1-2		V	\checkmark	\checkmark
0442	Phase-to-phase voltage L2-3		Umf L2-3		V	\checkmark	\checkmark
0444	Phase-to-phase voltage L3-1		Umf L3-1		V	\checkmark	\checkmark
0446	Average phase-to-phase voltage		Umf avg		V	\checkmark	\checkmark
0448	Average active power	L123	Pavg	L123	W	\checkmark	\times
0450	Average reactive power		Qavg		var	\checkmark	\times
0452	Average apparent power		Savg		VA	\checkmark	\times
0454	Current in neutral wire		IN		A	\checkmark	\times
0456	Recalculated current in neutral wire		INC		A	\checkmark	\times
0458	Average value of angle between voltage and	L123	φ avg	L123	rad	\checkmark	\times
0460	current		φ avg		-	\checkmark	\times
0462	Voltage phase-to-phase angle L1-2		* U L1-2		\bigcirc	\checkmark	\checkmark
0464	Voltage phase-to-phase angle L2-3		* U L2-3		-	\checkmark	\checkmark
0466	Voltage phase-to-phase angle L3-1		* U L3-1			\checkmark	\checkmark
0468	Average value of phase-to-phase angle L123		* U avg L	L123		\checkmark	\checkmark
0470	Voltage asymmetry		Vunb		\%	v	\checkmark

4500	Voltage RMS - MAX	Urms	L1	V	\checkmark	\times
4502	Voltage RMS - MIN	Urms		V	\checkmark	\times
4504	Current RMS - MAX	Irms		A	\checkmark	\checkmark
4506	Current RMS - MIN	Irms		A	\checkmark	\checkmark
4508	Primary voltage - MAX	Ufund		V	\checkmark	\times
4510	Primary voltage - MIN	Ufund		V	\checkmark	\times

4512	Active power - MAX	P	W	\checkmark	\times
4514	Active power - MIN	P	W	\checkmark	\times
4516	Reactive power - MAX	Q	var	\checkmark	\times
4518	Reactive power - MIN	Q	var	\checkmark	\times
4520	Apparent power - MAX	S	VA	\checkmark	\times
4322	Apparent power - MIN	S	VA	\checkmark	\times
4524	Voltage RMS - MAX	Urms	V	\checkmark	\times
4526	Voltage RMS - MIN	Urms	V	\checkmark	\times
4528	Current RMS - MAX	Irms	A	\checkmark	\checkmark
4530	Current RMS - MIN	Irms	A	\checkmark	\checkmark
4532	Primary voltage - MAX	Ufund	V	\checkmark	\times
4534	Primary voltage - MIN	Ufund	V	\checkmark	\times
4536	Active power - MAX	P	W	\checkmark	\times
4538	Active power - MIN	P	W	\checkmark	\times
4540	Reactive power - MAX	Q	var	\checkmark	\times
4542	Reactive power - MIN	Q	var	\checkmark	\times
4544	Apparent power - MAX	S	VA	\checkmark	\times
4346	Apparent power - MIN	S	VA	\checkmark	\times
4548	Voltage RMS - MAX	Urms	V	\checkmark	\times
4550	Voltage RMS - MIN	Urms	V	\checkmark	\times
4552	Current RMS - MAX	Irms	A	\checkmark	\checkmark
4554	Current RMS - MIN	Irms	A	\checkmark	\checkmark
4556	Primary voltage - MAX	Ufund	V	\checkmark	\times
4558	Primary voltage - MIN	Ufund	V	\checkmark	\times
4560	Active power - MAX	P	W	\checkmark	\times
4562	Active power - MIN	P	W	\checkmark	\times
4564	Reactive power - MAX	Q	var	\checkmark	\times
4566	Reactive power - MIN	Q	var	\checkmark	\times
4568	Apparent power - MAX	S	VA	\checkmark	\times
4370	Apparent power - MIN	S	VA	\checkmark	\times

12.8.6. Parameters measured with aggregation of $\mathbf{1 0} \mathbf{~ m i n}$

Register	Parameter		Symbol		Unit	3 Ph $/$ 4 W	$\begin{aligned} & 3 \mathrm{Ph} / \\ & 3 \mathrm{~W} \end{aligned}$
0500	Voltage RMS	L1	Urms	L1	V	\checkmark	\times
0502	Current RMS		Irms		A	\checkmark	\checkmark
0504	Primary voltage		Ufund		V	\checkmark	\times
0506	Active power		P		W	\checkmark	\times
0508	Reactive power		Q		var	\checkmark	\times
0510	Apparent power		S		VA	\checkmark	\times
0512	Power distortion factor		dPF		-	\checkmark	\times
0514	Active power factor		PF		-	\checkmark	\times
0516	$\operatorname{tg} \varphi$ factor		$\operatorname{tg} \varphi$		-	\checkmark	\times
0518	Reserved						
0520	Angle between the voltage and current		φ		rad	\checkmark	\times
0522			φ		-	\checkmark	\times
0524	Voltage RMS	L2	Urms	L2	V	\checkmark	\times
0526	Current RMS		Irms		A	\checkmark	\checkmark
0528	Primary voltage		Ufund		V	\checkmark	\times
0530	Active power		P		W	\checkmark	\times
0532	Reactive power		Q		var	\checkmark	\times
0534	Apparent power		S		VA	\checkmark	\times
0536	Power distortion factor		dPF		-	\checkmark	\times
0538	Active power factor		PF		-	\checkmark	\times
0540	$\operatorname{tg} \varphi$ factor		$\operatorname{tg} \varphi$		-	\checkmark	\times
0542	Reserved						
0544	Angle between the voltage and current	L2	φ	L2	rad	\checkmark	\times
0546			φ		-	\checkmark	\times
0548	Voltage RMS	L3	Urms	L3	V	\checkmark	\times
0550	Current RMS		Irms		A	\checkmark	\checkmark
0552	Primary voltage		Ufund		V	\checkmark	\times
0554	Active power		P		W	\checkmark	\times
0556	Reactive power		Q		var	\checkmark	\times
0558	Apparent power		S		VA	\checkmark	\times
0560	Power distortion factor		dPF		-	\checkmark	\times
0562	Active power factor		PF		-	\checkmark	\times
0564	$\operatorname{tg} \varphi$ factor		$\operatorname{tg} \varphi$		-	\checkmark	\times
0566	Reserved						
0568	Angle between the voltage and current	L3	φ	L3	rad	\checkmark	\times

0570			φ		-	\checkmark	\times
0572	Average voltage	L123	Uavg	L123	V	\checkmark	\times
0574	Average current		I avg		A	\checkmark	\checkmark
0576	Average primary voltage		Ufavg		V	\checkmark	\times
0578	Sum of active power		$\Sigma \mathrm{P}$		W	\checkmark	\times
0580	Sum of reactive power		$\Sigma \mathrm{Q}$		var	\checkmark	\times
0582	Sum of apparent power		Σ S		VA	\checkmark	\times
0584	Average value of power distortion factor		dPFavg		-	\checkmark	\times
0586	Average value of active power factor		PFavg		-	\checkmark	\times
0588	Average value of $\operatorname{tg} \varphi$ factor		tgeavg		-	\checkmark	\times
0590	Phase-to-phase voltage L1-2		Umf L1-2		V	\checkmark	\checkmark
0592	Phase-to-phase voltage L2-3		Umf L2-3		V	\checkmark	\checkmark
0594	Phase-to-phase voltage L3-1		Umf L3-1		V	\checkmark	\checkmark
0596	Average phase-to-phase voltage	L123	Umf avg	L123	V	\checkmark	\checkmark
0598	Average active power		Pavg		W	\checkmark	\times
0600	Average reactive power		Qavg		var	\checkmark	\times
0602	Average apparent power		Savg		VA	\checkmark	\times
0604	Current in neutral wire		IN		A	\checkmark	\times
0606	Recalculated current in neutral wire		INC		A	\checkmark	\times
0608	Average value of angle between voltage and current	L123	φ avg	L123	rad	\checkmark	\times
0610			φ avg		-	\checkmark	\times
0612	Voltage phase-to-phase angle L1-2		ষ U L1-2		-	\checkmark	\checkmark
0614	Voltage phase-to-phase angle L2-3		× U L2-3		-	\checkmark	\checkmark
0616	Voltage phase-to-phase angle L3-1		ষ U L3-1		-	\checkmark	\checkmark
0618	Average value of phase-to-phase angle		ষ U avg L123		。	\checkmark	\checkmark
0620	Voltage asymmetry		Vunb		\%	\checkmark	\checkmark
4600	Voltage RMS - MAX		Urms	L1	V	\checkmark	\times
4602	Voltage RMS - MIN		Urms		V	\checkmark	\times
4604	Current RMS - MAX		Irms		A	\checkmark	\checkmark
4606	Current RMS - MIN		Irms		A	\checkmark	\checkmark
4608	Primary voltage - MAX		Ufund		V	\checkmark	\times
4610	Primary voltage - MIN		Ufund		V	\checkmark	\times
4612	Active power - MAX		P		W	\checkmark	\times
4614	Active power - MIN		P		W	\checkmark	\times
4616	Reactive power - MAX		Q		var	\checkmark	\times
4618	Reactive power - MIN		Q		var	\checkmark	\times
4620	Apparent power - MAX		S		VA	\checkmark	\times

4322	Apparent power - MIN	S	VA	\checkmark	\times
4624	Voltage RMS - MAX	Urms	V	\checkmark	\times
4626	Voltage RMS - MIN	Urms	V	\checkmark	\times
4628	Current RMS - MAX	Irms	A	\checkmark	\checkmark
4630	Current RMS - MIN	Irms	A	\checkmark	\checkmark
4632	Primary voltage - MAX	Ufund	V	\checkmark	\times
4634	Primary voltage - MIN	Ufund	V	\checkmark	\times
4636	Active power - MAX	P	W	\checkmark	\times
4638	Active power - MIN	P	W	\checkmark	\times
4640	Reactive power - MAX	Q	var	\checkmark	\times
4642	Reactive power - MIN	Q	var	\checkmark	\times
4644	Apparent power - MAX	S	VA	\checkmark	\times
4346	Apparent power - MIN	S	VA	\checkmark	\times
4648	Voltage RMS - MAX	Urms	V	\checkmark	\times
4650	Voltage RMS - MIN	Urms	V	\checkmark	\times
4652	Current RMS - MAX	Irms	A	\checkmark	\checkmark
4654	Current RMS - MIN	Irms	A	\checkmark	\checkmark
4656	Primary voltage - MAX	Ufund	V	\checkmark	\times
4658	Primary voltage - MIN	Ufund	V	\checkmark	\times
4660	Active power - MAX	P	W	\checkmark	\times
4662	Active power - MIN	P	W	\checkmark	\times
4664	Reactive power - MAX	Q	var	\checkmark	\times
4666	Reactive power - MIN	Q	var	\checkmark	\times
4668	Apparent power - MAX	S	VA	\checkmark	\times
4370	Apparent power - MIN	S	VA	\checkmark	\times

12.8.8. Parameters measured with aggregation of $\mathbf{2}$ hours

Register	Parameter		Symbol		Unit	$\begin{aligned} & 3 \mathrm{Ph} / \\ & 4 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 3 \mathrm{Ph} / \\ & 3 \mathrm{~W} \end{aligned}$
0650	Voltage RMS		Urms		V	\checkmark	\times
0652	Current RMS		Irms		A	\checkmark	\checkmark
0654	Primary voltage		Ufund		V	\checkmark	\times
0656	Active power		P		W	\checkmark	\times
0658	Reactive power	L1	Q	L1	var	\checkmark	\times
0660	Apparent power		S		VA	\checkmark	\times

4700	Voltage RMS - MAX	Urms	L1	V	\checkmark	\times
4702	Voltage RMS - MIN	Urms		V	\checkmark	\times
4704	Current RMS - MAX	Irms		A	\checkmark	\checkmark
4706	Current RMS - MIN	Irms		A	\checkmark	\checkmark
4708	Primary voltage - MAX	Ufund		V	\checkmark	\times
4710	Primary voltage - MIN	Ufund		V	\checkmark	\times
4712	Active power - MAX	P		W	\checkmark	\times
4714	Active power - MIN	P		W	\checkmark	\times
4716	Reactive power - MAX	Q		var	\checkmark	\times
4718	Reactive power - MIN	Q		var	\checkmark	\times
4720	Apparent power - MAX	S		VA	\checkmark	\times
4322	Apparent power - MIN	S		VA	\checkmark	\times

4724	Voltage RMS - MAX	Urms		V	\checkmark	\times
4726	Voltage RMS - MIN	Urms		V	\checkmark	\times

4728	Current RMS - MAX	Irms	L2	A	\checkmark	\checkmark
4730	Current RMS - MIN	Irms		A	\checkmark	\checkmark
4732	Primary voltage - MAX	Ufund		V	\checkmark	\times
4734	Primary voltage - MIN	Ufund		V	\checkmark	\times
4736	Active power - MAX	P		W	\checkmark	\times
4738	Active power - MIN	P		W	\checkmark	\times
4740	Reactive power - MAX	Q		var	\checkmark	\times
4742	Reactive power - MIN	Q		var	\checkmark	\times
4744	Apparent power - MAX	S		VA	\checkmark	\times
4346	Apparent power - MIN	S		VA	\checkmark	\times

4748	Voltage RMS - MAX	Urms	L3	V	\checkmark	\times
4750	Voltage RMS - MIN	Urms		V	\checkmark	\times
4752	Current RMS - MAX	Irms		A	\checkmark	\checkmark
4754	Current RMS - MIN	Irms		A	\checkmark	\checkmark
4756	Primary voltage - MAX	Ufund		V	\checkmark	\times
4758	Primary voltage - MIN	Ufund		V	\checkmark	\times
4760	Active power - MAX	P		W	\checkmark	\times
4762	Active power - MIN	P		W	\checkmark	\times
4764	Reactive power - MAX	Q		var	\checkmark	\times
4766	Reactive power - MIN	Q		var	\checkmark	\times
4768	Apparent power - MAX	S		VA	\checkmark	\times
4370	Apparent power - MIN	S		VA	\checkmark	\times

12.8.9. Parameters averaged in time (Demand)

Register	Parameter	Symbol	Unit	3 Ph 4 W	$3 \mathrm{Ph} /$ 3 W
0800	Averaged active power (Demand)	P Demand	W	\checkmark	\checkmark
	Averaged reactive power (Demand)	Q Demand	var	\checkmark	\checkmark
0804	Averaged apparent power (Demand)	S Demand	VA	\checkmark	\checkmark
0806	Averaged voltage (Demand)	U Demand	V	\checkmark	\checkmark
0808	Averaged current (Demand)	I Demand	A	\checkmark	\checkmark

12.8.10. Frequency, temperature/resistance

			4 W	3 W	
0818	Frequency for aggregation of 1 s	f 1s	Hz	\checkmark	\checkmark
	Frequency for aggregation of 10 s	f 10 s	Hz	\checkmark	\checkmark
	Temperature/resistance in first channel	T1	${ }^{\circ} \mathrm{C} / \Omega$	\checkmark	\checkmark
	Temperature/resistance in second channel	T2	${ }^{\circ} \mathrm{C} / \Omega$	\checkmark	\checkmark
0826	Temperature of analog card	-	${ }^{\circ} \mathrm{C}$	\checkmark	\checkmark

12.8.11. Flicker

Register	Parameter		Symbol	Unit	3 Ph 1 4 W	$3 P h$ 1 $3 W$
0828	1 minute Flicker value	L1	Pst 1min	-	\checkmark	\checkmark
0830		L2		-	\checkmark	\checkmark
0832		L3		-	\checkmark	\checkmark
0834	10 minute Flicker value	L1	Pst 10min	-	\checkmark	\checkmark
0836		L2		-	\checkmark	\checkmark
0838		L3		-	\checkmark	\checkmark
0840	2 hour Flicker value	L1	Plt 2H	-	\checkmark	\checkmark
0842		L2		-	\checkmark	\checkmark
0844		L3		-	\checkmark	\checkmark

12.8.12. Statuses of binary inputs

Register	Parameter	Symbol	Unit	$\begin{aligned} & 3 \mathrm{Ph} / \\ & 4 \mathrm{~W} \end{aligned}$	$\begin{gathered} 3 \mathrm{Ph} / \\ 3 \mathrm{~W} \end{gathered}$
0852	Binary input no. 1	BI 1	-	\checkmark	\checkmark
0854	Binary input no. 2	BI 2	-	\checkmark	\checkmark
0856	Binary input no. 3	BI 3	-	\checkmark	\checkmark
0858	Binary input no. 4	BI 4	-	\checkmark	\checkmark
0860	Binary input no. 5	BI 5	-	\checkmark	\checkmark
0862	Binary input no. 6	BI 6	-	\checkmark	\checkmark

12.8.13. Energy meters

Register	Parameter		Symbol	Unit	$\begin{aligned} & 3 \mathrm{Ph} / \\ & 4 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 3 \mathrm{Ph} / \\ & 3 \mathrm{~W} \end{aligned}$
0900	Active imported energy	L1	EnP+	MWh	\checkmark	\checkmark
0902	Active imported energy		EnP+	kWh	\checkmark	\checkmark
0904	Active imported energy	L2	EnP+	MWh	\checkmark	\checkmark
0906	Active imported energy		EnP+	kWh	\checkmark	\checkmark
0908	Active imported energy	L3	EnP+	MWh	\checkmark	\checkmark
0910	Active imported energy		EnP+	kWh	\checkmark	\checkmark
0912	Sum of active imported energy	L123	$\mathrm{EnP}+$	MWh	\checkmark	\checkmark
0914	Sum of active imported energy		\EnP+	kWh	\checkmark	\checkmark
0916	Active exported energy	L1	EnP-	MWh	\checkmark	\checkmark
0918	Active exported energy		EnP-	kWh	\checkmark	\checkmark
0920	Active exported energy	L2	EnP-	MWh	\checkmark	\checkmark
0922	Active exported energy		EnP-	kWh	\checkmark	\checkmark
0924	Active exported energy	L3	EnP-	MWh	\checkmark	\checkmark
0926	Active exported energy		EnP-	kWh	\checkmark	\checkmark
0928	Sum of active exported energy	L123	IEnP-	MWh	\checkmark	\checkmark
0930	Sum of active exported energy		Σ EnP-	kWh	\checkmark	\checkmark
0932	Reactive imported inductive energy	L1	EnQ+	Mvarh	\checkmark	\checkmark
0934	Reactive imported inductive energy		EnQ + \}	kvarh	\checkmark	\checkmark
0936	Reactive imported inductive energy	L2	EnQ+ ${ }^{\text {a }}$	Mvarh	\checkmark	\checkmark
0938	Reactive imported inductive energy		EnQ+	kvarh	\checkmark	\checkmark
0940	Reactive imported inductive energy	L3	EnQ+ ${ }^{\text {a }}$	Mvarh	\checkmark	\checkmark
0942	Reactive imported inductive energy		EnQ + \%	kvarh	\checkmark	\checkmark
0944	Sum of reactive imported inductive energy	L123	$\Sigma \mathrm{EnQ}+\hat{}$	Mvarh	\checkmark	\checkmark
0946	Sum of reactive imported inductive energy		$\Sigma \mathrm{EnQ}+\hat{}$	kvarh	\checkmark	\checkmark
0948	Reactive exported inductive energy	L1	EnQ - $\}$	Mkvarh	\checkmark	\checkmark
0950	Reactive exported inductive energy		EnQ -	kvarh	\checkmark	\checkmark
0952	Reactive exported inductive energy	L2	EnQ - $\}$	Mvarh	\checkmark	\checkmark
0954	Reactive exported inductive energy		EnQ - $\}$	kvarh	\checkmark	\checkmark
0956	Reactive exported inductive energy	L3	EnQ - $\}$	Mvarh	\checkmark	\checkmark
0958	Reactive exported inductive energy		EnQ -	kvarh	\checkmark	\checkmark
0960	Sum of reactive exported inductive energy	L123		Mvarh	\checkmark	\checkmark

0962	Sum of reactive exported inductive energy		SEnQ -	kvarh	\checkmark	\checkmark
0964	Reactive imported capacity energy	L1	EnQ+ -1	MVAh	\checkmark	\checkmark
0966	Reactive imported capacity energy		EnQ+ ヶ1	kVAh	\checkmark	\checkmark
0968	Reactive imported capacity energy	L2	EnQ+ -1	MVAh	\checkmark	\checkmark
0970	Reactive imported capacity energy		EnQ+ -1	kVAh	\checkmark	\checkmark
0972	Reactive imported capacity energy	L3	EnQ+ -1	MVAh	\checkmark	\checkmark
0974	Reactive imported capacity energy		EnQ+ -1	kVAh	\checkmark	\checkmark
0976	Sum of reactive imported capacity energy	L123	$\Sigma \mathrm{EnQ}+$-1	MVAh	\checkmark	\checkmark
0978	Sum of reactive imported capacity energy		$\Sigma \mathrm{EnQ}+$ - +	kVAh	\checkmark	\checkmark
0980	Reactive exported capacity energy	L1	EnQ- -1	Mkvarh	\checkmark	\checkmark
0982	Reactive exported capacity energy		EnQ- -1	kvarh	\checkmark	\checkmark
0984	Reactive exported capacity energy	L2	EnQ- -1	Mvarh	\checkmark	\checkmark
0986	Reactive exported capacity energy		EnQ- -1	kvarh	\checkmark	\checkmark
0988	Reactive exported capacity energy	L3	EnQ- $1 \vdash$	Mvarh	\checkmark	\checkmark
0990	Reactive exported capacity energy		EnQ- -1	kvarh	\checkmark	\checkmark
0992	Sum of reactive exported capacity energy	L123	LEnQ- -1	Mvarh	\checkmark	\checkmark
0994	Sum of reactive exported capacity energy		こEnQ- -1	kvarh	\checkmark	\checkmark
0996	Apparent energy	L1	EnS	MVAh	\checkmark	\checkmark
0998	Apparent energy		EnS	kVAh	\checkmark	\checkmark
1000	Apparent energy	L2	EnS	MVAh	\checkmark	\checkmark
1002	Apparent energy		EnS	kVAh	\checkmark	\checkmark
1004	Apparent energy	L3	EnS	MVAh	\checkmark	\checkmark
1006	Apparent energy		EnS	kVAh	\checkmark	\checkmark
1008	Sum of apparent energy	L123	2EnS	MVAh	\checkmark	\checkmark
1010	Sum of apparent energy		$\Sigma \mathrm{EnS}$	kVAh	\checkmark	\checkmark

Recalculation of energy meters available in the registers, for example EnP +L 1 :
$\mathrm{EnP}+\mathrm{L} 1=(($ Register value $0900 \times 1000)+$ register value 0902$)[\mathrm{kWh}]$
other energy values are similarly recalculated.

12.8.14. THD, THDS, THDG and PWHD registers

Register	Parameter	Symbol	Unit	$\begin{aligned} & 3 \mathrm{Ph} / 2 \\ & 4 \mathrm{~W} \end{aligned}$	$\begin{gathered} 3 \mathrm{Ph} / \\ 3 \mathrm{~W} \end{gathered}$
1050	THD factor of L1 voltage	THD U L1	\%	\checkmark	\times
1052	THD factor of L2 voltage	THD U L2	\%	\checkmark	\times
1054	THD factor of L3 voltage	THD U L3	\%	\checkmark	\times
1056	Average THD value of L123 voltage	THD Uavg L123	\%	\checkmark	\times
1058	THD factor of L1 current	THD I L1	\%	\checkmark	\checkmark
1060	THD factor of L2 current	THD I L2	\%	\checkmark	\checkmark
1062	THD factor of L3 current	THD I L3	\%	\checkmark	\checkmark
1064	Average THD value of L123 current	THD Iavg L123	\%	\checkmark	\checkmark
1066	THDS factor of L1 voltage	THDS U L1	\%	\checkmark	\times
1068	THDS factor of L2 voltage	THDS U L2	\%	\checkmark	\times
1070	THDS factor of L3 voltage	THDS U L3	\%	\checkmark	\times
1072	Average THDS value of L123 voltage	THDS Uavg L123	\%	\checkmark	\times
1074	THDS factor of L1 current	THDS I L1	\%	\checkmark	\checkmark
1076	THDS factor of L2 current	THDS I L2	\%	\checkmark	\checkmark
1078	THDS factor of L3 current	THDS I L3	\%	\checkmark	\checkmark
1080	Average THDS value of L123 current	THDS Iavg L123	\%	\checkmark	\checkmark
1082	THDG factor of L1 voltage	THDG U L1	\%	\checkmark	\times
1084	THDG factor of L2 voltage	THDG U L2	\%	\checkmark	\times
1086	THDG factor of L3 voltage	THDG U L3	\%	\checkmark	\times
1088	Average THDG value of L123 voltage	THDG Uavg L123	\%	\checkmark	\times
1090	THDG factor of L1 current	THDG I L1	\%	\checkmark	\checkmark
1092	THDG factor of L2 current	THDG I L2	\%	\checkmark	\checkmark
1094	THDG factor of L3 current	THDG I L3	\%	\checkmark	\checkmark
1096	Average THDG value of L123 current	THDG Iavg L123	\%	\checkmark	\checkmark
1098	PWHD factor of L1 voltage	PWHD U L1	\%	\checkmark	\times
1100	PWHD factor of L2 voltage	PWHD U L2	\%	\checkmark	\times
1102	PWHD factor of L3 voltage	PWHD U L3	\%	\checkmark	\times
1104	Average PWHD value of L123 voltage	PWHD Uavg L123	\%	\checkmark	\times
1106	PWHD factor of L1 current	PWHD I L1	\%	\checkmark	\checkmark
1108	PWHD factor of L2 current	PWHD I L2	\%	\checkmark	\checkmark
1110	PWHD factor of L3 current	PWHD I L3	\%	\checkmark	\checkmark
1112	Average PWHD value of L123 current	PWHD Iavg L123	\%	\checkmark	\checkmark

12.8.15. Harmonics registers

Register	Parameter		Symbol		Unit	$\begin{aligned} & 3 \mathrm{Ph} / \\ & 4 \mathrm{~h} \end{aligned}$	$\begin{aligned} & 3 \mathrm{Ph} / \\ & 3 \mathrm{~W} \end{aligned}$
$\begin{aligned} & 1150 \\ & 1152 \\ & 1154 \end{aligned}$	Harmonic no. 1 Harmonic no. 2 Harmonic no. 3	U L1	Har1	U L1	\%	\checkmark	\times
			Har2		\%	\checkmark	\times
			Har3		\%	\checkmark	\times
		\ldots					
1246	Harmonic no. 49		Har49		\%	\checkmark	\times
1248	Harmonic no. 50	U L1	Har50	U L1	\%	\checkmark	\times
1250	Harmonic no. 51		Har51		\%	\checkmark	\times
1252	Harmonic no. 1		Hr1		\%	\checkmark	\times
1254	Harmonic no. 2	U L2	Hr2	U L2	\%	\checkmark	\times
1256	Harmonic no. 3		Hr3		\%	\checkmark	\times
..		\ldots					
1348	Harmonic no. 49		Hr49		\%	\checkmark	\times
1350	Harmonic no. 50	U L2	Hr50	U L2	\%	\checkmark	\times
1352	Harmonic no. 51		Hr51		\%	\checkmark	\times
1354	Harmonic no. 1		Hr1		\%	\checkmark	\times
1356	Harmonic no. 2	U L3	Hr2	U L3	\%	\checkmark	\times
1358	Harmonic no. 3		Hr3		\%	\checkmark	\times
..		\ldots					
1450	Harmonic no. 49		Hr49		\%	\checkmark	\times
1452	Harmonic no. 50	U L3	Hr50	U L3	\%	\checkmark	\times
1454	Harmonic no. 51		Hr51		\%	\checkmark	\times
1456	Harmonic no. 1		Har1		\%	\checkmark	\times
1458	Harmonic no. 2	I L1	Har2	I L1	\%	\checkmark	\times
1460	Harmonic no. 3		Har3		\%	\checkmark	\times
..		\ldots					
1552	Harmonic no. 49		Har49		\%	\checkmark	\times
1554	Harmonic no. 50	I L1	Har50	I L1	\%	\checkmark	\times
1556	Harmonic no. 51		Har51		\%	\checkmark	\times
1558	Harmonic no. 1		Har1		\%	\checkmark	\times
1560	Harmonic no. 2	I L2	Har2	I L2	\%	\checkmark	\times
1562	Harmonic no. 3		Har3		\%	\checkmark	\times
..		...					

1654	Harmonic no. 49	I L2	Har49	I L2	\%	\checkmark	x
1656	Harmonic no. 50		Har50		\%	\checkmark	x
1658	Harmonic no. 51		Har51		\%	\checkmark	\times
1660	Harmonic no. 1	I L3	Har1	I L3	\%	\checkmark	\times
1662	Harmonic no. 2		Har2		\%	\checkmark	\times
1664	Harmonic no. 3		Har3		\%	\checkmark	\times
	...						
1756	Harmonic no. 49	I L3	Har49	I L3	\%	\checkmark	\times
1758	Harmonic no. 50		Har50		\%	\checkmark	\times
1760	Harmonic no. 51		Har51		\%	\checkmark	\times

12.8.16. Interharmonics registers

Register	Parameter		Symbol		Unit	$3 \mathrm{Ph} /$	$3 \mathrm{Ph} / 3 \mathrm{~W}$
1762	Interharmonic no. 1	U L1	IHar1	U L1	\%	\checkmark	\times
1764	Interharmonic no. 2		IHar2		\%	\checkmark	\times
1766	Interharmonic no. 3		IHar3		\%	\checkmark	\times
...	\ldots						
1858	Interharmonic no. 49	U L1	IHar49	U L1	\%	\checkmark	\times
1860	Interharmonic no. 50		IHar50		\%	\checkmark	\times
1862	Interharmonic no. 51		IHar51		\%	\checkmark	\times
1864	Interharmonic no. 1	U L2	IHr1	U L2	\%	\checkmark	\times
1866	Interharmonic no. 2		IHr 2		\%	\checkmark	\times
1868	Interharmonic no. 3		IHr3		\%	\checkmark	\times
..	...						
1960	Interharmonic no. 49	U L2	IHr49	U L2	\%	\checkmark	\times
1962	Interharmonic no. 50		IHr50		\%	\checkmark	\times
1964	Interharmonic no. 51		IHr51		\%	\checkmark	\times
1966	Interharmonic no. 1	U L3	IHr1	U L3	\%	\checkmark	\times
1968	Interharmonic no. 2		IHr2		\%	\checkmark	\times
1970	Interharmonic no. 3		IHr3		\%	\checkmark	\times
..	...						
2062	Interharmonic no. 49		IHr49		\%	\checkmark	\times

2064	Interharmonic no. 50	U L3	IHr50	U L3	\%	\checkmark	\times
2066	Interharmonic no. 51		IHr51		\%	\checkmark	\times
2068	Interharmonic no. 1	I L1	IHar1	I L1	\%	\checkmark	\times
2070	Interharmonic no. 2		IHar2		\%	\checkmark	\times
2072	Interharmonic no. 3		IHar3		\%	\checkmark	\times
..	...						
2164	Interharmonic no. 49	I L1	IHar49	I L1	\%	\checkmark	\times
2166	Interharmonic no. 50		IHar50		\%	\checkmark	\times
2168	Interharmonic no. 51		IHar51		\%	\checkmark	\times
2170	Interharmonic no. 1	I L2	IHar1	I L2	\%	\checkmark	\times
2172	Interharmonic no. 2		IHar2		\%	\checkmark	\times
2174	Interharmonic no. 3		IHar3		\%	\checkmark	\times
..	...						
1654	Interharmonic no. 49	I L2	IHar49	I L2	\%	\checkmark	\times
1656	Interharmonic no. 50		IHar50		\%	\checkmark	\times
2270	Interharmonic no. 51		IHar51		\%	\checkmark	\times
2272	Interharmonic no. 1	I L3	IHar1	I L3	\%	\checkmark	\times
2274	Interharmonic no. 2		IHar2		\%	\checkmark	\times
2276	Interharmonic no. 3		IHar3		\%	\checkmark	\times
..	...						
2368	Interharmonic no. 49	I L3	IHar49	I L3	\%	\checkmark	\times
2370	Interharmonic no. 50		IHar50		\%	\checkmark	\times
2372	Interharmonic no. 51		IHar51		\%	\checkmark	\times

12.8.17. Voltage half-waves registers

Register	Parameter		$\begin{aligned} & 50 \\ & \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 60 \\ & \mathrm{~Hz} \end{aligned}$	Symbol		Unit	$\begin{gathered} 3 \mathrm{Ph} / \\ 4 \mathrm{~W} \end{gathered}$	$\begin{gathered} 3 \mathrm{Ph} / \\ 3 \mathrm{~W} \end{gathered}$
2380	Half-wave value no. 1 Half-wave value no. 2 Half-wave value no. 3	U L1	\checkmark	\checkmark	Uhalf1		V	\checkmark	\times
2382			\checkmark	\checkmark	Uhalf2	U L	V	\checkmark	\times
2384			\checkmark	\checkmark	Uhalf3		V	\checkmark	\times

12.8.18. Dips/swells/increases registers

Register	Parametr		$\begin{aligned} & 50 \\ & \mathrm{~Hz} \end{aligned}$	60	Symbol	Unit	$\begin{gathered} 3 \mathrm{Ph} / \\ 4 \mathrm{~W} \end{gathered}$	$\begin{gathered} 3 \mathrm{Ph} / \\ 3 \mathrm{~W} \end{gathered}$
Beginning of event								
2580	Event type	Event 1	\checkmark	\checkmark	-	-	\checkmark	\times
2581	Event Phase No.		\checkmark	\checkmark	-	-	\checkmark	\times
2582	Hour		\checkmark	\checkmark	-	-	\checkmark	\times
2583	Minute		\checkmark	\checkmark	-	-	\checkmark	\times
2584	Second		\checkmark	\checkmark	-	-	\checkmark	\times
2585	Milisecond		\checkmark	\checkmark	-	-	\checkmark	\times
2586	Year		\checkmark	\checkmark	-	-	\checkmark	\times

2587	Month		\checkmark	\checkmark	-	-	\checkmark	\times
2588	Day		\checkmark	\checkmark	-	-	\checkmark	\times
2589	Event type	Event 2	\checkmark	\checkmark	-	-	\checkmark	\times
2590	Event Phase No.		\checkmark	\checkmark	-	-	\checkmark	\times
2591	Hour		\checkmark	\checkmark	-	-	\checkmark	\times
2592	Minute		\checkmark	\checkmark	-	-	\checkmark	\times
2593	Second		\checkmark	\checkmark	-	-	\checkmark	\times
2594	Milisecond		\checkmark	\checkmark	-	-	\checkmark	\times
2595	Year		\checkmark	\checkmark	-	-	\checkmark	-
2596	Month		\checkmark	\checkmark	-	-	\checkmark	\times
2597	Day		\checkmark	\checkmark	-	-	\checkmark	\times
2598	Event type	Event 3	\checkmark	\checkmark	-	-	\checkmark	\times
2599	Event Phase No.		\checkmark	\checkmark	-	-	\checkmark	\times
2600	Hour		\checkmark	\checkmark	-	-	\checkmark	\times
2601	Minute		\checkmark	\checkmark	-	-	\checkmark	\times
2602	Second		\checkmark	\checkmark	-	-	\checkmark	\times
2603	Milisecond		\checkmark	\checkmark	-	-	\checkmark	\times
2604	Year		\checkmark	\checkmark	-	-	\checkmark	\times
2605	Month		\checkmark	\checkmark	-	-	\checkmark	\times
2606	Day		\checkmark	\checkmark	-	-	\checkmark	\times
2607	Event type	Event 4	\checkmark	\checkmark	-	-	\checkmark	\times
2608	Event Phase No.		\checkmark	\checkmark	-	-	\checkmark	\times
2609	Hour		\checkmark	\checkmark	-	-	\checkmark	\times
2610	Minute		\checkmark	\checkmark	-	-	\checkmark	\times
2611	Second		\checkmark	\checkmark	-	-	\checkmark	\times
2612	Milisecond		\checkmark	\checkmark	-	-	\checkmark	\times
2613	Year		\checkmark	\checkmark	-	-	\checkmark	\times
2614	Month		\checkmark	\checkmark	-	-	\checkmark	\times
2615	Day		\checkmark	\checkmark	-	-	\checkmark	\times
2616	Event type	Event 5	\checkmark	\checkmark	-	-	\checkmark	\times
2617	Event Phase No.		\checkmark	\checkmark	-	-	\checkmark	\times
2618	Hour		\checkmark	\checkmark	-	-	\checkmark	\times
2619	Minute		\checkmark	\checkmark	-	-	\checkmark	\times

2620	Second		\checkmark	\checkmark	-	-	\checkmark	\times
2621	Milisecond		\checkmark	\checkmark	-	-	\checkmark	\times
2622	Year		\checkmark	\checkmark	-	-	\checkmark	\times
2623	Month		\checkmark	\checkmark	-	-	\checkmark	\times
2624	Day		\checkmark	\checkmark	-	-	\checkmark	\times
2625	Event type		\checkmark	\checkmark	-	-	\checkmark	\times
2626	Event Phase No.		\checkmark	\checkmark	-	-	\checkmark	\times
2627	Hour		\checkmark	\checkmark	-	-	\checkmark	\times
2628	Minute		\checkmark	\checkmark	-	-	\checkmark	\times
2629	Second	Event 6	\checkmark	\checkmark	-	-	\checkmark	\times
2630	Milisecond		\checkmark	\checkmark	-	-	\checkmark	\times
2631	Year		\checkmark	\checkmark	-	-	\checkmark	\times
2632	Month		\checkmark	\checkmark	-	-	\checkmark	\times
2633	Day		\checkmark	\checkmark	-	-	\checkmark	\times
2634	Event type		\checkmark	\checkmark	-	-	\checkmark	\times
2635	Event Phase No.		\checkmark	\checkmark	-	-	\checkmark	\times
2636	Hour		\checkmark	\checkmark	-	-	\checkmark	\times
2637	Minute		\checkmark	\checkmark	-	-	\checkmark	\times
2638	Second	Event 7	\checkmark	\checkmark	-	-	\checkmark	\times
2639	Milisecond		\checkmark	\checkmark	-	-	\checkmark	\times
2640	Year		\checkmark	\checkmark	-	-	\checkmark	\times
2641	Month		\checkmark	\checkmark	-	-	\checkmark	\times
2642	Day		\checkmark	\checkmark	-	-	\checkmark	\times
2643	Event type		\checkmark	\checkmark	-	-	\checkmark	\times
2644	Event Phase No.		\checkmark	\checkmark	-	-	\checkmark	\times
2645	Hour		\checkmark	\checkmark	-	-	\checkmark	\times
2646	Minute		\checkmark	\checkmark	-	-	\checkmark	\times
2647	Second	Event 8	\checkmark	\checkmark	-	-	\checkmark	\times
2648	Milisecond		\checkmark	\checkmark	-	-	\checkmark	\times
2659	Year		\checkmark	\checkmark	-	-	\checkmark	\times
2660	Month		\checkmark	\checkmark	-	-	\checkmark	\times
2661	Day		\checkmark	\checkmark	-	-	\checkmark	\times
2662	Event type	Event 9	\checkmark	\checkmark	-	-	\checkmark	\times

2663	Event Phase No.		\checkmark	\checkmark	-	-	\checkmark	\times
2664	Hour		\checkmark	\checkmark	-	-	\checkmark	\times
2665	Minute		\checkmark	\checkmark	-	-	\checkmark	\times
2666	Second		\checkmark	\checkmark	-	-	\checkmark	\times
2667	Milisecond		\checkmark	\checkmark	-	-	\checkmark	\times
2668	Year		\checkmark	\checkmark	-	-	\checkmark	\times
2669	Month		\checkmark	\checkmark	-	-	\checkmark	\times
2670	Day		\checkmark	\checkmark	-	-	\checkmark	\times
2671	Event type	Event 10	\checkmark	\checkmark	-	-	\checkmark	\times
2672	Event Phase No.		\checkmark	\checkmark	-	-	\checkmark	\times
2673	Hour		\checkmark	\checkmark	-	-	\checkmark	\times
2674	Minute		\checkmark	\checkmark	-	-	\checkmark	\times
2675	Second		\checkmark	\checkmark	-	-	\checkmark	\times
2676	Milisecond		\checkmark	\checkmark	-	-	\checkmark	\times
2677	Year		\checkmark	\checkmark	-	-	\checkmark	\times
2678	Month		\checkmark	\checkmark	-	-	\checkmark	\times
2679	Day		\checkmark	\checkmark	-	-	\checkmark	\times
End of event								
2680	Event type	Event 1	\checkmark	\checkmark	-	-	\checkmark	\times
2681	Event Phase No.		\checkmark	\checkmark	-	-	\checkmark	\times
2682	L1 integer value		\checkmark	\checkmark	-	-	\checkmark	\times
2683	L1 fractional value		\checkmark	\checkmark	-	-	\checkmark	\times
2684	L2 integer value		\checkmark	\checkmark	-	-	\checkmark	\times
2685	L2 fractional value		\checkmark	\checkmark	-	-	\checkmark	\times
2686	L3 integer value		\checkmark	\checkmark	-	-	\checkmark	\times
2687	L3 fractional value		\checkmark	\checkmark	-	-	\checkmark	\times
2688	Duration (hours)		\checkmark	\checkmark	-	-	\checkmark	\times
2689	Duration (minutes)		\checkmark	\checkmark	-	-	\checkmark	\times
2690	Duration (seconds)		\checkmark	\checkmark	-	-	\checkmark	\times
2691	Duration (milliseconds)		\checkmark	\checkmark	-	-	\checkmark	\times
2692	Event type	Event 2	\checkmark	\checkmark	-	-	\checkmark	\times
2693	Event Phase No.		\checkmark	\checkmark	-	-	\checkmark	\times
2694	L1 total value		\checkmark	\checkmark	-	-	\checkmark	\times

2695	L1 fractional value		\checkmark	\checkmark	-	-	\checkmark	\times
2696	L2 total value		\checkmark	\checkmark	-	-	\checkmark	\times
2697	L2 fractional value		\checkmark	\checkmark	-	-	\checkmark	\times
2698	L3 total value		\checkmark	\checkmark	-	-	\checkmark	\times
2699	L3 fractional value		\checkmark	\checkmark	-	-	\checkmark	\times
2700	Duration (hours)		\checkmark	\checkmark	-	-	\checkmark	\times
2701	Duration (minutes)		\checkmark	\checkmark	-	-	\checkmark	\times
2702	Duration (seconds)		\checkmark	\checkmark	-	-	\checkmark	\times
2703	Duration (miliseconds)		\checkmark	\checkmark	-	-	\checkmark	\times
2704	Event type	Event 3	\checkmark	\checkmark	-	-	\checkmark	\times
2705	Event Phase No.		\checkmark	\checkmark	-	-	\checkmark	\times
2706	L1 total value		\checkmark	\checkmark	-	-	\checkmark	\times
2707	L1 fractional value		\checkmark	\checkmark	-	-	\checkmark	\times
2708	L2 total value		\checkmark	\checkmark	-	-	\checkmark	\times
2709	L2 fractional value		\checkmark	\checkmark	-	-	\checkmark	\times
2710	L3 total value		\checkmark	\checkmark	-	-	\checkmark	\times
2711	L3 fractional value		\checkmark	\checkmark	-	-	\checkmark	\times
2712	Duration (hours)		\checkmark	\checkmark	-	-	\checkmark	\times
2713	Duration (minutes)		\checkmark	\checkmark	-	-	\checkmark	\times
2714	Duration (seconds)		\checkmark	\checkmark	-	-	\checkmark	\times
2715	Duration (miliseconds)		\checkmark	\checkmark	-	-	\checkmark	\times
2716	Event type	Event 4	\checkmark	\checkmark	-	-	\checkmark	\times
2717	Event Phase No.		\checkmark	\checkmark	-	-	\checkmark	\times
2718	L1 total value		\checkmark	\checkmark	-	-	\checkmark	\times
2719	L1 fractional value		\checkmark	\checkmark	-	-	\checkmark	\times
2720	L2 total value		\checkmark	\checkmark	-	-	\checkmark	\times
2721	L2 fractional value		\checkmark	\checkmark	-	-	\checkmark	\times
2722	L3 total value		\checkmark	\checkmark	-	-	\checkmark	\times
2723	L3 fractional value		\checkmark	\checkmark	-	-	\checkmark	\times
2724	Duration (hours)		\checkmark	\checkmark	-	-	\checkmark	\times
2725	Duration (minutes)		\checkmark	\checkmark	-	-	\checkmark	\times
2726	Duration (seconds)		\checkmark	\checkmark	-	-	\checkmark	\times
2727	Duration (miliseconds)		\checkmark	\checkmark	-	-	\checkmark	\times

2728	Event type	Event 5	\checkmark	\checkmark	-	-	\checkmark	\times
2729	Event Phase No.		\checkmark	\checkmark	-	-	\checkmark	\times
2730	L1 total value		\checkmark	\checkmark	-	-	\checkmark	\times
2731	L1 fractional value		\checkmark	\checkmark	-	-	\checkmark	\times
2732	L2 total value		\checkmark	\checkmark	-	-	\checkmark	\times
2733	L2 fractional value		\checkmark	\checkmark	-	-	\checkmark	\times
2734	L3 total value		\checkmark	\checkmark	-	-	\checkmark	\times
2735	L3 fractional value		\checkmark	\checkmark	-	-	\checkmark	\times
2736	Duration (hours)		\checkmark	\checkmark	-	-	\checkmark	\times
2737	Duration (minutes)		\checkmark	\checkmark	-	-	\checkmark	\times
2738	Duration (seconds)		\checkmark	\checkmark	-	-	\checkmark	\times
2739	Duration (miliseconds)		\checkmark	\checkmark	-	-	\checkmark	\times
2740	Event type	Event 6	\checkmark	\checkmark	-	-	\checkmark	\times
2741	Event Phase No.		\checkmark	\checkmark	-	-	\checkmark	\times
2742	L1 total value		\checkmark	\checkmark	-	-	\checkmark	\times
2743	L1 fractional value		\checkmark	\checkmark	-	-	\checkmark	\times
2744	L2 total value		\checkmark	\checkmark	-	-	\checkmark	\times
2745	L2 fractional value		\checkmark	\checkmark	-	-	\checkmark	\times
2746	L3 total value		\checkmark	\checkmark	-	-	\checkmark	\times
2747	L3 fractional value		\checkmark	\checkmark	-	-	\checkmark	\times
2748	Duration (hours)		\checkmark	\checkmark	-	-	\checkmark	\times
2749	Duration (minutes)		\checkmark	\checkmark	-	-	\checkmark	\times
2750	Duration (seconds)		\checkmark	\checkmark	-	-	\checkmark	\times
2751	Duration (miliseconds)		\checkmark	\checkmark	-	-	\checkmark	\times
2752	Event type	Event 7	\checkmark	\checkmark	-	-	\checkmark	\times
2753	Event Phase No.		\checkmark	\checkmark	-	-	\checkmark	\times
2754	L1 total value		\checkmark	\checkmark	-	-	\checkmark	\times
2755	L1 fractional value		\checkmark	\checkmark	-	-	\checkmark	\times
2756	L2 total value		\checkmark	\checkmark	-	-	\checkmark	\times
2757	L2 fractional value		\checkmark	\checkmark	-	-	\checkmark	\times
2758	L3 total value		\checkmark	\checkmark	-	-	\checkmark	\times
2759	L3 fractional value		\checkmark	\checkmark	-	-	\checkmark	\times
2760	Duration (hours)		\checkmark	\checkmark	-	-	\checkmark	\times

2761	Duration (minutes)		\checkmark	\checkmark	-	-	\checkmark	\times
2762	Duration (seconds)		\checkmark	\checkmark	-	-	\checkmark	\times
2763	Duration (miliseconds)		\checkmark	\checkmark	-		\checkmark	\times
2764	Event type	Event 8	\checkmark	\checkmark	-	-	\checkmark	\times
2765	Event Phase No.		\checkmark	\checkmark	-	-	\checkmark	\times
2766	L1 total value		\checkmark	\checkmark	-	-	\checkmark	\times
2767	L1 fractional value		\checkmark	\checkmark	-	-	\checkmark	\times
2768	L2 total value		\checkmark	\checkmark	-	-	\checkmark	\times
2769	L2 fractional value		\checkmark	\checkmark	-	-	\checkmark	\times
2770	L3 total value		\checkmark	\checkmark	-	-	\checkmark	\times
2771	L3 fractional value		\checkmark	\checkmark	-	-	\checkmark	\times
2772	Duration (hours)		\checkmark	\checkmark	-	-	\checkmark	\times
2773	Duration (minutes)		\checkmark	\checkmark	-	-	\checkmark	\times
2774	Duration (seconds)		\checkmark	\checkmark	-	-	\checkmark	\times
2775	Duration (miliseconds)		\checkmark	\checkmark	-	-	\checkmark	\times
2776	Event type	Event 9	\checkmark	\checkmark	-	-	\checkmark	\times
2777	Event Phase No.		\checkmark	\checkmark	-	-	\checkmark	\times
2778	L1 total value		\checkmark	\checkmark	-	-	\checkmark	\times
2779	L1 fractional value		\checkmark	\checkmark	-	-	\checkmark	\times
2780	L2 total value		\checkmark	\checkmark	-	-	\checkmark	\times
2781	L2 fractional value		\checkmark	\checkmark	-	-	\checkmark	\times
2782	L3 total value		\checkmark	\checkmark	-	-	\checkmark	\times
2783	L3 fractional value		\checkmark	\checkmark	-	-	\checkmark	\times
2784	Duration (hours)		\checkmark	\checkmark	-	-	\checkmark	\times
2785	Duration (minutes)		\checkmark	\checkmark	-	-	\checkmark	\times
2786	Duration (seconds)		\checkmark	\checkmark	-	-	\checkmark	\times
2787	Duration (miliseconds)		\checkmark	\checkmark	-	-	\checkmark	\times
2788	Event type	Event 10	\checkmark	\checkmark	-	-	\checkmark	\times
2789	Event Phase No.		\checkmark	\checkmark	-	-	\checkmark	\times
2790	L1 total value		\checkmark	\checkmark	-	-	\checkmark	\times
2791	L1 fractional value		\checkmark	\checkmark	-	-	\checkmark	\times
2792	L2 total value		\checkmark	\checkmark	-	-	\checkmark	\times
2793	L2 fractional value		\checkmark	\checkmark	-	-	\checkmark	\times

2794	L3 total value
2795	L3 fractional value
2796	Duration (hours)
2797	Duration (minutes)
2798	Duration (seconds)
2799	Duration (miliseconds)

12.8.19. Pulse and energy counters from the external card

Register	Parametr	50 Hz	60 Hz	Symbol	Unit	$3 \mathrm{Ph} / 4 \mathrm{~W}$	$3 \mathrm{Ph} / 3 \mathrm{~W}$
2800	Output 1 pulse counter	\checkmark	\checkmark	-	imp	\checkmark	\checkmark
2802	Output 2 pulse counter	\checkmark	\checkmark	-	imp	\checkmark	\checkmark
2804	Output 3 pulse counter	\checkmark	\checkmark	-	imp	\checkmark	\checkmark
2806	Output 4 pulse counter	\checkmark	\checkmark	-	imp	\checkmark	\checkmark
2808	Output 5 pulse counter	\checkmark	\checkmark	-	imp	\checkmark	\checkmark
2810	Output 6 pulse counter	\checkmark	\checkmark	-	imp	\checkmark	\checkmark
2812	Output 1 energy counter	\checkmark	\checkmark	-	kWh	\checkmark	\checkmark
2814	Output 2 energy counter	\checkmark	\checkmark	-	kWh	\checkmark	\checkmark
2816	Output 3 energy counter	\checkmark	\checkmark	-	kWh	\checkmark	\checkmark
2818	Output 4 energy counter	\checkmark	\checkmark	-	kWh	\checkmark	\checkmark
2820	Output 5 energy counter	\checkmark	\checkmark	-	kWh	\checkmark	\checkmark
2822	Output 6 energy counter	\checkmark	\checkmark	-	kWh	\checkmark	\checkmark

12.8.20. Tariffs

Register	Parameter	Symbol		Unit	3 Ph 4 W	3 Ph 1 3 W
Tariff 1						
2850	Active imported energy	L1	EnP+	MWh	\checkmark	\checkmark
2852	Active imported energy	L1	EnP+	kWh	\checkmark	\checkmark
2854	Active imported energy	L2	EnP+	MWh	\checkmark	\checkmark
2856	Active imported energy	L2	EnP+	kWh	\checkmark	\checkmark

2858	Active imported energy	L3	EnP＋	MWh	\checkmark	\checkmark
2860	Active imported energy	L3	EnP＋	kWh	\checkmark	\checkmark
2862	Sum of active imported energy	L123	$\Sigma \mathrm{EnP}+$	MWh	\checkmark	\checkmark
2864	Sum of active imported energy	L123	EEnP＋	kWh	\checkmark	\checkmark
2866	Active exported energy	L1	EnP－	MWh	\checkmark	\checkmark
2868	Active exported energy	L1	EnP－	kWh	\checkmark	\checkmark
2870	Active exported energy	L2	EnP－	MWh	\checkmark	\checkmark
2872	Active exported energy	L2	EnP－	kWh	\checkmark	\checkmark
2874	Active exported energy	L3	EnP－	MWh	\checkmark	\checkmark
2876	Active exported energy	L3	EnP－	kWh	\checkmark	\checkmark
2878	Sum of active exported energy	L123	Σ EnP－	MWh	\checkmark	\checkmark
2880	Sum of active exported energy	L123	$\Sigma \mathrm{EnP}$－	kWh	\checkmark	\checkmark
2882	Reactive imported inductive energy	L1	EnQ + \}	Mvarh	\checkmark	\checkmark
2884	Reactive imported inductive energy	L1	EnQ + \}	kvarh	\checkmark	\checkmark
2886	Reactive imported inductive energy	L2	EnQ＋${ }^{\text {¢ }}$	Mvarh	\checkmark	\checkmark
2888	Reactive imported inductive energy	L2	EnQ＋${ }^{\text {a }}$	kvarh	\checkmark	\checkmark
2890	Reactive imported inductive energy	L3	EnQ＋${ }^{\text {a }}$	Mvarh	\checkmark	\checkmark
2892	Reactive imported inductive energy	L3	EnQ + \}	kvarh	\checkmark	\checkmark
2894	Sum of reactive imported inductive energy	L123	$\Sigma \mathrm{EnQ}+$ \}	Mvarh	\checkmark	\checkmark
2896	Sum of reactive imported inductive energy	L123	$\Sigma \mathrm{EnQ}+$ \}	kvarh	\checkmark	\checkmark
2898	Reactive exported capacitive energy	L1	EnQ－${ }^{\text {z }}$	Mvarh	\checkmark	\checkmark
2900	Reactive exported capacitive energy	L1	EnQ－${ }^{\text {¢ }}$	kvarh	\checkmark	\checkmark
2902	Reactive exported capacitive energy	L2	EnQ－${ }^{\text {\％}}$	Mvarh	\checkmark	\checkmark
2904	Reactive exported capacitive energy	L2	EnQ－${ }^{\text {\％}}$	kvarh	\checkmark	\checkmark
2906	Reactive exported capacitive energy	L3	EnQ－${ }^{\text {z }}$	Mvarh	\checkmark	\checkmark
2908	Reactive exported capacitive energy	L3	EnQ－${ }^{\text {z }}$	kvarh	\checkmark	\checkmark
2910	Sum of reactive exported capacitive energy	L123	こEnQ－\}	Mvarh	\checkmark	\checkmark
2912	Sum of reactive exported capacitive energy	L123	こEnQ－\}	kvarh	\checkmark	\checkmark
2914	Reactive imported inductive energy	L1	EnQ＋ヶ1	Mvarh	\checkmark	\checkmark
2916	Reactive imported inductive energy	L1	EnQ＋ヶ・	kvarh	\checkmark	\checkmark
2918	Reactive imported inductive energy	L2	EnQ＋－	Mvarh	\checkmark	\checkmark

2920	Reactive imported inductive energy	L2	EnQ＋－1－	kvarh	\checkmark	\checkmark
2922	Reactive imported inductive energy	L3	EnQ＋ヶ1	Mvarh	\checkmark	\checkmark
2924	Reactive imported inductive energy	L3	EnQ＋ヶ・	kvarh	\checkmark	
2926	Sum of reactive imported inductive energy	L123	こEnQ＋ヶ	Mvarh	\checkmark	\checkmark
2928	Sum of reactive imported inductive energy	L123	こEnQ＋ヶ1	kvarh	\checkmark	\checkmark
2930	Reactive exported capacitive energy	L1	EnQ－－1	Mvarh	\checkmark	\checkmark
2932	Reactive exported capacitive energy	L1	EnQ－－1	kvarh	\checkmark	
2934	Reactive exported capacitive energy	L2	EnQ－－1	Mvarh	\checkmark	\checkmark
2936	Reactive exported capacitive energy	L2	EnQ－－！	kvarh	\checkmark	\checkmark
2938	Reactive exported capacitive energy	L3	EnQ－－！	Mvarh	\checkmark	\checkmark
2940	Reactive exported capacitive energy	L3	EnQ－－1	kvarh	\checkmark	\checkmark
2942	Sum of reactive exported capacitive energy	L123	इEnQ－ヶ	Mvarh	\checkmark	\checkmark
2944	Sum of reactive exported capacitive energy	L123	こEnQ－－ト	kvarh	\checkmark	\checkmark
2946	Apparent energy	L1	EnS	MVAh	\checkmark	\checkmark
2948	Apparent energy	L1	EnS	kVAh	\checkmark	\checkmark
2950	Apparent energy	L2	EnS	MVAh	\checkmark	\checkmark
2952	Apparent energy	L2	EnS	kVAh	\checkmark	\checkmark
2954	Apparent energy	L3	EnS	MVAh	\checkmark	\checkmark
2956	Apparent energy	L3	EnS	kVAh	\checkmark	\checkmark
2958	Sum of apparent energy	L123	$\Sigma \mathrm{EnS}$	MVAh	\checkmark	\checkmark
2960	Sum of apparent energy	L123	$\Sigma \mathrm{EnS}$	kVAh	\checkmark	\checkmark
Tariff 2						
2962	Active imported energy	L1	EnP＋	MWh	\checkmark	\checkmark
2966	Active imported energy	L1	EnP＋	kWh	\checkmark	\checkmark
2966	Active imported energy	L2	EnP＋	MWh	\checkmark	\checkmark
2968	Active imported energy	L2	EnP＋	kWh	\checkmark	\checkmark
2970	Active imported energy	L3	EnP＋	MWh	\checkmark	\checkmark
2972	Active imported energy	L3	EnP＋	kWh	\checkmark	\checkmark
2974	Sum of active imported energy	L123	$\Sigma \mathrm{EnP}+$	MWh	\checkmark	\checkmark
2976	Sum of active imported energy	L123	$\mathrm{EnP}+$	kWh	\checkmark	\checkmark
2978	Active exported energy	L1	EnP－	MWh	\checkmark	\checkmark

2980	Active exported energy	L1	EnP－	kWh	\checkmark	\checkmark
2982	Active exported energy	L2	EnP－	MWh	\checkmark	\checkmark
2984	Active exported energy	L2	EnP－	kWh	\checkmark	\checkmark
2986	Active exported energy	L3	EnP－	MWh	\checkmark	\checkmark
2988	Active exported energy	L3	EnP－	kWh	\checkmark	\checkmark
2990	Sum of active exported energy	L123	VEnP－	MWh	\checkmark	\checkmark
2992	Sum of active exported energy	L123	$\Sigma \mathrm{EnP}$－	kWh	\checkmark	\checkmark
2994	Reactive imported inductive energy	L1	EnQ ${ }^{+}$\}	Mvarh	\checkmark	\checkmark
2996	Reactive imported inductive energy	L1	EnQ + \}	kvarh	\checkmark	\checkmark
2998	Reactive imported inductive energy	L2	EnQ＋${ }^{\text {¢ }}$	Mvarh	\checkmark	\checkmark
3000	Reactive imported inductive energy	L2	EnQ＋${ }^{\text {¢ }}$	kvarh	\checkmark	\checkmark
3002	Reactive imported inductive energy	L3	EnQ＋${ }^{\text {\％}}$	Mvarh	\checkmark	\checkmark
3004	Reactive imported inductive energy	L3	EnQ ${ }^{+}$\}	kvarh	\checkmark	\checkmark
3006	Sum of reactive imported inductive energy	L123	$\Sigma \mathrm{EnQ}+$ \}	Mvarh	\checkmark	\checkmark
3008	Sum of reactive imported inductive energy	L123	$\Sigma \mathrm{EnQ}+$ \}	kvarh	\checkmark	\checkmark
3010	Reactive exported capacitive energy	L1	EnQ－${ }^{\text {\％}}$	Mvarh	\checkmark	\checkmark
3012	Reactive exported capacitive energy	L1	EnQ－${ }^{\text {a }}$	kvarh	\checkmark	\checkmark
3014	Reactive exported capacitive energy	L2	EnQ－${ }^{\text {¢ }}$	Mvarh	\checkmark	\checkmark
3016	Reactive exported capacitive energy	L2	EnQ－${ }^{\text {¢ }}$	kvarh	\checkmark	\checkmark
3018	Reactive exported capacitive energy	L3	EnQ－${ }^{\text {\％}}$	Mvarh	\checkmark	\checkmark
3020	Reactive exported capacitive energy	L3	EnQ－${ }^{\text {\％}}$	kvarh	\checkmark	\checkmark
3022	Sum of reactive exported capacitive energy	L123	EEnQ－${ }^{\text {\％}}$	Mvarh	\checkmark	\checkmark
3024	Sum of reactive exported capacitive energy	L123	SEnQ－${ }^{\text {¢ }}$	kvarh	\checkmark	\checkmark
3026	Reactive imported inductive energy	L1	EnQ＋$\dagger 1$	Mvarh	\checkmark	\checkmark
3028	Reactive imported inductive energy	L1	EnQ＋ヶ	kvarh	\checkmark	\checkmark
3030	Reactive imported inductive energy	L2	EnQ＋－ヶ｜	Mvarh	\checkmark	\checkmark
3032	Reactive imported inductive energy	L2	EnQ＋－•	kvarh	\checkmark	\checkmark
3034	Reactive imported inductive energy	L3	EnQ＋ヶ1	Mvarh	\checkmark	\checkmark
3036	Reactive imported inductive energy	L3	EnQ＋－1	kvarh	\checkmark	\checkmark
3038	Sum of reactive imported inductive energy	L123	$\Sigma \mathrm{EnQ}+$－+	Mvarh	\checkmark	\checkmark
3040	Sum of reactive imported inductive energy	L123	$\Sigma \mathrm{EnQ}+\dashv \vdash$	kvarh	\checkmark	\checkmark

3042	Reactive exported capacitive energy	L1	EnQ－－1	Mvarh	\checkmark	\checkmark
3044	Reactive exported capacitive energy	L1	EnQ－－+	kvarh	\checkmark	\checkmark
3046	Reactive exported capacitive energy	L2	EnQ－－+	Mvarh	\checkmark	\checkmark
3048	Reactive exported capacitive energy	L2	EnQ－－ト	kvarh	\checkmark	\checkmark
3050	Reactive exported capacitive energy	L3	EnQ－－ト	Mvarh	\checkmark	\checkmark
3052	Reactive exported capacitive energy	L3	EnQ－－ト	kvarh	\checkmark	\checkmark
3054	Sum of reactive exported capacitive energy	L123	EEnQ－－1－	Mvarh	\checkmark	\checkmark
3056	Sum of reactive exported capacitive energy	L123	EEnQ－－1－	kvarh	\checkmark	\checkmark
3058	Apparent energy	L1	EnS	MVAh	\checkmark	\checkmark
3060	Apparent energy	L1	EnS	kVAh	\checkmark	\checkmark
3062	Apparent energy	L2	EnS	MVAh	\checkmark	\checkmark
3064	Apparent energy	L2	EnS	kVAh	\checkmark	\checkmark
3066	Apparent energy	L3	EnS	MVAh	\checkmark	\checkmark
3068	Apparent energy	L3	EnS	kVAh	\checkmark	\checkmark
3070	Sum of apparent energy	L123	$\Sigma \mathrm{EnS}$	MVAh	\checkmark	\checkmark
3072	Sum of apparent energy	L123	$\Sigma \mathrm{EnS}$	kVAh	\checkmark	\checkmark

Tariff 3

3074	Active imported energy	L1	EnP＋	MWh	\checkmark	\checkmark
3076	Active imported energy	L1	EnP＋	kWh	\checkmark	\checkmark
3078	Active imported energy	L2	EnP＋	MWh	\checkmark	\checkmark
3080	Active imported energy	L2	EnP＋	kWh	\checkmark	\checkmark
3082	Active imported energy	L3	EnP＋	MWh	\checkmark	\checkmark
3084	Active imported energy	L3	EnP＋	kWh	\checkmark	\checkmark
3086	Sum of active imported energy	L123	$\Sigma \mathrm{EnP}+$	MWh	\checkmark	\checkmark
3088	Sum of active imported energy	L123	$\Sigma \mathrm{EnP}+$	kWh	\checkmark	\checkmark
3090	Active exported energy	L1	EnP－	MWh	\checkmark	\checkmark
3092	Active exported energy	L1	EnP－	kWh	\checkmark	\checkmark
3094	Active exported energy	L2	EnP－	MWh	\checkmark	\checkmark
3096	Active exported energy	L2	EnP－	kWh	\checkmark	\checkmark
3098	Active exported energy	L3	EnP－	MWh	\checkmark	\checkmark
3100	Active exported energy	L3	EnP－	kWh	\checkmark	\checkmark

3102	Sum of active exported energy	L123	Σ EnP－	MWh	\checkmark	\checkmark
3104	Sum of active exported energy	L123	Σ EnP－	kWh	\checkmark	\checkmark
3106	Reactive imported inductive energy	L1	EnQ＋${ }^{\text {a }}$	Mvarh	\checkmark	\checkmark
3108	Reactive imported inductive energy	L1	EnQ＋${ }^{\text {a }}$	kvarh	\checkmark	\checkmark
3110	Reactive imported inductive energy	L2	EnQ＋${ }^{\text {a }}$	Mvarh	\checkmark	\checkmark
3112	Reactive imported inductive energy	L2	EnQ＋${ }^{\text {a }}$	kvarh	\checkmark	\checkmark
3114	Reactive imported inductive energy	L3	EnQ＋${ }^{\text {a }}$	Mvarh	\checkmark	\checkmark
3116	Reactive imported inductive energy	L3	EnQ＋${ }^{\text {a }}$	kvarh	\checkmark	\checkmark
3118	Sum of reactive imported inductive energy	L123	$\Sigma \mathrm{EnQ}+$ \％	Mvarh	\checkmark	\checkmark
3120	Sum of reactive imported inductive energy	L123	$\Sigma \mathrm{EnQ}+$ \}	kvarh	\checkmark	\checkmark
3122	Reactive exported capacitive energy	L1	EnQ－${ }^{\text {¢ }}$	Mvarh	\checkmark	\checkmark
3124	Reactive exported capacitive energy	L1	EnQ－${ }^{\text {a }}$	kvarh	\checkmark	\checkmark
3126	Reactive exported capacitive energy	L2	EnQ－${ }^{\text {\％}}$	Mvarh	\checkmark	\checkmark
3128	Reactive exported capacitive energy	L2	EnQ－${ }^{\text {¢ }}$	kvarh	\checkmark	\checkmark
3130	Reactive exported capacitive energy	L3	EnQ－${ }^{\text {\％}}$	Mvarh	\checkmark	\checkmark
3132	Reactive exported capacitive energy	L3	EnQ－${ }^{\text {¢ }}$	kvarh	\checkmark	\checkmark
3134	Sum of reactive exported capacitive energy	L123	SEnQ－$\}$	Mvarh	\checkmark	\checkmark
3136	Sum of reactive exported capacitive energy	L123	こEnQ－$\}$	kvarh	\checkmark	\checkmark
3138	Reactive imported inductive energy	L1	EnQ＋ヶ・	Mvarh	\checkmark	\checkmark
3140	Reactive imported inductive energy	L1	EnQ＋ヶ・	kvarh	\checkmark	\checkmark
3142	Reactive imported inductive energy	L2	EnQ＋－1＋	Mvarh	\checkmark	\checkmark
3144	Reactive imported inductive energy	L2	EnQ＋－ヶ｜	kvarh	\checkmark	\checkmark
3146	Reactive imported inductive energy	L3	EnQ＋ヶ・	Mvarh	\checkmark	\checkmark
3148	Reactive imported inductive energy	L3	EnQ＋ヶ・	kvarh	\checkmark	\checkmark
3150	Sum of reactive imported inductive energy	L123	こEnQ＋ヶ	Mvarh	\checkmark	\checkmark
3152	Sum of reactive imported inductive energy	L123	こEnQ＋－	kvarh	\checkmark	\checkmark
3154	Reactive exported capacitive energy	L1	EnQ－－！	Mvarh	\checkmark	\checkmark
3156	Reactive exported capacitive energy	L1	EnQ－－＋	kvarh	\checkmark	\checkmark
3158	Reactive exported capacitive energy	L2	EnQ－－！	Mvarh	\checkmark	\checkmark
3160	Reactive exported capacitive energy	L2	EnQ－－－	kvarh	\checkmark	\checkmark
3162	Reactive exported capacitive energy	L3	EnQ－－！	Mvarh	\checkmark	\checkmark

3164	Reactive exported capacitive energy	L3	EnQ- -1	kvarh	\checkmark	\checkmark
3166	Sum of reactive exported capacitive energy	L123	$\Sigma \mathrm{EnQ} \mathrm{Cl}^{-1}$	Mvarh	\checkmark	\checkmark
3168	Sum of reactive exported capacitive energy	L123	$\Sigma \mathrm{EnQ} \mathrm{C}^{-1}$	kvarh	\checkmark	\checkmark
3170	Apparent energy	L1	EnS	MVAh	\checkmark	\checkmark
3172	Apparent energy	L1	EnS	kVAh	\checkmark	\checkmark
3174	Apparent energy	L2	EnS	MVAh	\checkmark	\checkmark
3176	Apparent energy	L2	EnS	kVAh	\checkmark	\checkmark
3178	Apparent energy	L3	EnS	MVAh	\checkmark	\checkmark
3180	Apparent energy	L3	EnS	kVAh	\checkmark	\checkmark
3182	Sum of apparent energy	L123	$\Sigma \mathrm{EnS}$	MVAh	\checkmark	\checkmark
3184	Sum of apparent energy	L123	$\Sigma \mathrm{EnS}$	kVAh	\checkmark	\checkmark
Tariff 4						
3186	Active imported energy	L1	EnP+	MWh	\checkmark	\checkmark
3188	Active imported energy	L1	EnP+	kWh	\checkmark	\checkmark
3190	Active imported energy	L2	EnP+	MWh	\checkmark	\checkmark
3192	Active imported energy	L2	EnP+	kWh	\checkmark	\checkmark
3194	Active imported energy	L3	EnP+	MWh	\checkmark	\checkmark
3196	Active imported energy	L3	EnP+	kWh	\checkmark	\checkmark
3198	Sum of active imported energy	L123	$\Sigma \mathrm{EnP}+$	MWh	\checkmark	\checkmark
3200	Sum of active imported energy	L123	EnP+	kWh	\checkmark	\checkmark
3202	Active exported energy	L1	EnP-	MWh	\checkmark	\checkmark
3204	Active exported energy	L1	EnP-	kWh	\checkmark	\checkmark
3206	Active exported energy	L2	EnP-	MWh	\checkmark	\checkmark
3208	Active exported energy	L2	EnP-	kWh	\checkmark	\checkmark
3210	Active exported energy	L3	EnP-	MWh	\checkmark	\checkmark
3212	Active exported energy	L3	EnP-	kWh	\checkmark	\checkmark
3214	Sum of active exported energy	L123	$\Sigma \mathrm{EnP}$ -	MWh	\checkmark	\checkmark
3216	Sum of active exported energy	L123	$\Sigma \mathrm{EnP}$ -	kWh	\checkmark	\checkmark
3218	Reactive imported inductive energy	L1	EnQ+ ${ }^{\text {a }}$	Mvarh	\checkmark	\checkmark
3220	Reactive imported inductive energy	L1	EnQ+ ${ }^{\text {a }}$	kvarh	\checkmark	\checkmark
3222	Reactive imported inductive energy	L2	EnQ+ ${ }^{\text {a }}$	Mvarh	\checkmark	\checkmark

3224	Reactive imported inductive energy	L2	EnQ＋${ }^{\text {a }}$	kvarh	\checkmark	\checkmark
3226	Reactive imported inductive energy	L3	EnQ＋${ }^{\text {a }}$	Mvarh	\checkmark	\checkmark
3228	Reactive imported inductive energy	L3	EnQ＋\}	kvarh	\checkmark	\checkmark
3230	Sum of reactive imported inductive energy	L123	$\Sigma \mathrm{EnQ}+$ \％	Mvarh	\checkmark	\checkmark
3232	Sum of reactive imported inductive energy	L123	$\Sigma \mathrm{EnQ}+$ \％	kvarh	\checkmark	\checkmark
3234	Reactive exported capacitive energy	L1	EnQ－${ }^{\text {\％}}$	Mvarh	\checkmark	\checkmark
3236	Reactive exported capacitive energy	L1	EnQ－${ }^{\text {¢ }}$	kvarh	\checkmark	\checkmark
3238	Reactive exported capacitive energy	L2	EnQ－${ }^{\text {\％}}$	Mvarh	\checkmark	\checkmark
3240	Reactive exported capacitive energy	L2	EnQ－${ }^{\text {a }}$	kvarh	\checkmark	\checkmark
3242	Reactive exported capacitive energy	L3	EnQ－${ }^{\text {a }}$	Mvarh	\checkmark	\checkmark
3244	Reactive exported capacitive energy	L3	EnQ－${ }^{\text {\％}}$	kvarh	\checkmark	\checkmark
3246	Sum of reactive exported capacitive energy	L123	SEnQ－$\}$	Mvarh	\checkmark	\checkmark
3248	Sum of reactive exported capacitive energy	L123	こEnQ－${ }^{\text {¢ }}$	kvarh	\checkmark	\checkmark
3250	Reactive imported inductive energy	L1	EnQ＋ヶ・	Mvarh	\checkmark	\checkmark
3252	Reactive imported inductive energy	L1	EnQ＋ヶ・	kvarh	\checkmark	\checkmark
3254	Reactive imported inductive energy	L2	EnQ＋－1｜	Mvarh	\checkmark	\checkmark
3256	Reactive imported inductive energy	L2	EnQ＋－ヶ｜	kvarh	\checkmark	\checkmark
3258	Reactive imported inductive energy	L3	EnQ＋ヶ・	Mvarh	\checkmark	\checkmark
3260	Reactive imported inductive energy	L3	EnQ＋ヶ卜	kvarh	\checkmark	\checkmark
3262	Sum of reactive imported inductive energy	L123	VEnQ + ヶ	Mvarh	\checkmark	\checkmark
3264	Suma energii biernej indukcyjnej pobierana	L123	こEnQ＋ヶ	kvarh	\checkmark	\checkmark
3266	Reactive exported capacitive energy	L1	EnQ－－！	Mvarh	\checkmark	\checkmark
3268	Reactive exported capacitive energy	L1	EnQ－－1	kvarh	\checkmark	\checkmark
3270	Reactive exported capacitive energy	L2	EnQ－－！	Mvarh	\checkmark	\checkmark
3272	Reactive exported capacitive energy	L2	EnQ－－1	kvarh	\checkmark	\checkmark
3274	Reactive exported capacitive energy	L3	EnQ－－！	Mvarh	\checkmark	\checkmark
3276	Reactive exported capacitive energy	L3	EnQ－－！	kvarh	\checkmark	\checkmark
3278	Sum of reactive exported capacitive energy	L123	\EnQ－ヶ卜	Mvarh	\checkmark	\checkmark
3280	Sum of reactive exported capacitive energy	L123	こEnQ－－	kvarh	\checkmark	\checkmark
3282	Apparent energy	L1	EnS	MVAh	\checkmark	\checkmark
3284	Apparent energy	L1	EnS	kVAh	\checkmark	\checkmark

3286	Apparent energy	L2	EnS	MVAh	\checkmark	\checkmark
3288	Apparent energy	L2	EnS	kVAh	\checkmark	\checkmark
3290	Apparent energy	L3	EnS	MVAh	\checkmark	\checkmark
3292	Apparent energy	L3	EnS	kVAh	\checkmark	\checkmark
3294	Sum of apparent energy	L123	IEnS	MVAh	\checkmark	\checkmark
3296	Sum of apparent energy	L123	IEnS	kVAh	\checkmark	\checkmark

Recalculation of energy meters available in the registers, for example EnP +L 1 :
$\mathrm{EnP}+\mathrm{L} 1=(($ Register value $2850 \times 1000)+$ register value 2852) [kWh]
other energy values are similarly recalculated.

13. Ordering codes

Analyzer of Network Parameters ND45	X	X	X	X	X	XX	X
Input voltage (phase/ phase-to-phase) Un:							
$3 \times 57.7 \mathrm{~V} / 100 \mathrm{~V}$	1						
$3 \times 230.0 / 400 \mathrm{~V}$	2						
$3 \times 69.3 / 120 \mathrm{~V}$	3						
Inputs/outputs:							
none		0					
8 relay outputs		1					
6 binary inputs, 4 relay outputs		2					
6 binary inputs, 3 analog outputs $0 / 4-20 \mathrm{~mA}$		3					
4 binary inputs, 6 analog outputs 0/4-20 mA		4					
Power supply:							
85... 240 V ac, $90 \ldots 300 \mathrm{~V}$ dc			1				
Measuring class:							
Class S				0			
Class A/S				1			
Language:							
Polish					P		
English					E		
Version:							
standard						00	
In portable casing						01	
Custom-made*						XX	
Acceptance tests:							
without extra requirements							0
with quality inspection certificate							1
with calibration test certificate							2
acc. to customer's requirements*							X

*after agreement with the manufacturer

LUMEL
 EVERYTHINGCOUNTS

LUMEL S.A.

ul. Sulechowska 1, 65-022 Zielona Góra, POLAND tel.: +48 684575 100, fax +48 684575508 www.lumel.com.pl, e-mail: lumel@lumel.com.pl

Export department:

tel.: (+48 68) 4575 139, 4575 233, 4575 321, 4575 386, 4575353
fax.: (+48 68) 3254091
e-mail: export@lumel.com.pl

Calibration \& Attestation:

tel.: (68) 4575161
e-mail: laboratorium@lumel.com.pl

